CSE 332: Data Abstractions
Sorting |

Spring 2016

Announcements

Sorting

* Input
— an array A of data records
— a key value in each data record

— a comparison function which imposes a consistent
ordering on the keys

* Output
— “sorted” array A such that
« Foranyiandj, if i <jthen A[i] < A[j]

Consistent Ordering

» The comparison function must provide a consistent
ordering on the set of possible keys
— You can compare any two keys and get back an
indication of a<b, a> b, or a = b (trichotomy)
— The comparison functions must be consistent
* If compare (a,b) says a<b, then compare (b,a) must say b>a
* If compare (a,b) says a=b, then compare (b,a) must say b=a

* If compare (a,b) says a=b, then equals(a,b) and equals(b,a)
must say a=b

Why Sort?

* Provides fast search:
» Find kth largest element in:

Space

« How much space does the sorting algorithm require?
— In-place: no more than the array or at most O(1) addition space
— out-of-place: use separate data structures, copy back

— External memory sorting — data so large that does not fit in
memory

Stability

A sorting algorithm is stable if:

— Items in the input with the same value end up in the
same order as when they began.

Time

How fast is the algorithm?
— requirement: for any i<j, Ali] < A[j]
— This means that you need to at least check on each
element at the very minimum
» Complexity is at least:

— And you could end up checking each element against
every other element

» Complexity could be as bad as:

The big question: How close to O(n) can you get?

Input Unstable sort Stable Sort
Adams 1 Adams 1 Adams 1
Black 2 Smith 1 Smith 1
Brown 4 Washington 2 Black 2
Jackson 2 Jackson 2 Jackson 2
Jones 4 Black 2 Washington 2
Smith 1 White 3] White 3]
Thompson 4 Wilson 3 Wilson 3
Washington 2 Thompson 4 Brown 4
White & Brown 4 Jones 4
Wilson 3 Jones 4 Thompson 4
7
Sorting: The Big Picture
Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets

/ \ | |

Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Quick sort (avg)

Demo (with sound!)

« http://www.youtube.com/watch?v=kPRAOW 1kECqg

15 Sorting Algorithms in 6 Minutes

10

Selection Sort; idea

Find the smallest element, put it 15t

Find the next smallest element, put it 2nd
Find the next smallest, put it 37
Andsoon ...

HwbdhpE

1

Try it out: Selection Sort

» 31,16,54,4,2,17,6

12

http://www.youtube.com/watch?v=kPRA0W1kECg

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
for (i=0; i<n; ++1i) {
j = Find index of
smallest entry in a[i..n-1]
Swap (a[il,al[3])

Runtime:
worst case
best case
average case : 13

Bubble Sort

» Take a pass through the array
— If neighboring elements are out of order, swap them.

* Repeat until no swaps needed

« Wost & avg case: O(n?)
— pretty much no reason to ever use this algorithm

14

Insertion Sort

1. Sort first 2 elements.
2. Insert 3 element in order.

» (First 3 elements are now sorted.)
3. Insert 4t element in order

» (First4 elements are now sorted.)
4. Andsoon...

15

How to do the insertion?

Suppose my sequence is:
16, 31, 54, 78, 32,17, 6

And I've already sorted up to 78. How to insert 32?

16

Try it out: Insertion sort

» 31,16,54,4,2,17,6

17

Insertion Sort: Code

void InsertionSort (Array a[0..n-1]) {
for (i=1; i<n; i++) {
for (j=i; j>0; j--) {
if (alj] < alj-11)
Swap (a[jl,alj-11)
else
break

}

Note: can instead move the Rumlmv(\%/:orst case
“hole” to minimize copying,
pying best case

as with a binary heap. R S

18

Insertion Sort vs. Selection Sort

* Same worst case, avg case complexity

« Insertion better best-case

— preferable when input is “almost sorted”

« one of the best sorting algs for almost sorted case (also for
small arrays)

19

Sorting: The Big Picture

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
o(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Quick sort (avg)

20

Heap Sort: Sort with a Binary Heap

Worst Case Runtime:
21

In-place heap sort

— Treat the initial array as a heap (via buildHeap)
— When you delete the it" element, put it at arr[n-i]
* It's not part of the heap anymore!

[al7]s[ofs]efaofs]2]1]
\ J\ J

Ll T
heap part sorted part
> Islzlelofefuofa]s]a]s]
arr[n-i]= L || J T
deleteMin () heap part sorted part

22

AVL Sort

Insert nodes into an AVL Tree
Conduct an In-order traversal to extract nodes in sorted order

Worst Case Runtime:
23

“Divide and Conquer”

* Very important strategy in computer science:
— Divide problem into smaller parts
— Independently solve the parts
— Combine these solutions to get overall solution

« Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
- known as Mergesort

* Idea 2 : Partition array into small items and large items,
then recursively sort the two sets
- known as Quicksort

24

Mergesort

s[3f1]e

DEEE

Divide it in two at the midpoint
Sort each half (recursively)
Merge two halves together

25

Mergesort Example

[8[2]9f4[5[3]1]6]

Divide -

. 82 9 4 5316
Divide —— W
Divide 82 9.4 53 16

ivi N N N N
lelement 8 2 9 4 5 3 1 6
4 \/ S S
HETED 5 4 9 35 16
Merge \./ \./
2489 1356

\
Merge 4 5 3775 5 8 9

26

Merging: Two Pointer Method

» Perform merge using an auxiliary array

2falslofa]3fs]e

Ve

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Auxiliary array

Ve

27

Merging: Two Pointer Method

» Perform merge using an auxiliary array

1]3]5]6]

2]als]s
z

‘ 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Auxiliary array

va

28

Merging: Two Pointer Method

» Perform merge using an auxiliary array

2[a]e]o

t]3fs]s
.

‘ Auxiliary array

[1]2]a]efs] [|
/

29

Merging: Finishing Up

Starting from here...

—r
target
Left finishes up copy ij J
[I]
2
o target
/—\ﬁst copy this...
]
Right finishes up ._.tnen this® i i z
]

30
target

Merging: Two Pointer Method

 Final result

HEENDOED

‘1‘2‘3‘4‘5‘6‘ ‘ ‘ Auxiliary array

Complexity? Stability?

31

Merge (A[], Temp[], left, mid, right) ({
Int i, j, k, 1, target
i = left
j =mid + 1
target = left
while (i < mid && j < right) {
if (A[i] < A[3])
Temp [target] = A[i++]
else
Temp [target] = A[j++]
target++
}
if (i > mid) //left completed//
for (k = left to target-1)
A[k] = Temp[k];
if (j > right) //right completed//
k = mid
1 = right
while (k > i)
A[l--] = A[k--]
for (k = left to target-1)
A[k] = Temp[k]

Merging

32

Recursive Mergesort

MainMergesort(A[l..n], n) {
Array Temp[l..n]
Mergesort[A, Temp, 1, n]

}

Mergesort(A[], Temp[], left, right) {
if (left < right) {
mid = (left + right)/2
Mergesort (A, Temp, left, mid)
Mergesort (A, Temp, mid+l, right)
Merge (A, Temp, left, mid, right)
}
}

What is the recurrence relation?

33

Mergesort: Complexity

34

Iterative Mergesort

[TTTITTITITTITITITIT]
WV N W NN WV yerge by
LT T T T T T T[]
/S VSV VY

Merge by 2

Merge by 4

‘] Merge by 8

35

Iterative Mergesort

AT AT AT AT AT AT AT ATATATATATATATATA =

/S VAN VSV VW /N Mergeby2

v / v v/ v / v g Nitneplyd
‘ Y ‘ 7 ‘ v ‘ 7 ‘ Merge by 8
‘ v [7 ‘ Merge by 16
[J
| copy

Iterative Mergesort reduces copying
Complexity?

36

Properties of Mergesort

In-place?

Stable?

Sorted list complexity?

Nicely extends to handle linked lists.

Multi-way merge is basis of big data sorting.

Java uses Mergesort on Collections and on
Arrays of Objects.

37

