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Announcements

Sorting

* Input
— an array A of data records
— a key value in each data record

— a comparison function which imposes a consistent
ordering on the keys

* Output
— “sorted” array A such that
« Foranyiandj, if i <jthen A[i] < A[j]

Consistent Ordering

» The comparison function must provide a consistent
ordering on the set of possible keys
— You can compare any two keys and get back an
indication of a<b, a> b, or a = b (trichotomy)
— The comparison functions must be consistent
* If compare (a,b) says a<b, then compare (b,a) must say b>a
* If compare (a,b) says a=b, then compare (b,a) must say b=a

* If compare (a,b) says a=b, then equals(a,b) and equals(b,a)
must say a=b

Why Sort?

* Provides fast search:
» Find kth largest element in:

Space

« How much space does the sorting algorithm require?
— In-place: no more than the array or at most O(1) addition space
— out-of-place: use separate data structures, copy back

— External memory sorting — data so large that does not fit in
memory




Stability

A sorting algorithm is stable if:

— Items in the input with the same value end up in the
same order as when they began.

Time

How fast is the algorithm?
— requirement: for any i<j, Ali] < A[j]
— This means that you need to at least check on each
element at the very minimum
» Complexity is at least:

— And you could end up checking each element against
every other element

» Complexity could be as bad as:

The big question: How close to O(n) can you get?

Input Unstable sort Stable Sort
Adams 1 Adams 1 Adams 1
Black 2 Smith 1 Smith 1
Brown 4 Washington 2 Black 2
Jackson 2 Jackson 2 Jackson 2
Jones 4 Black 2 Washington 2
Smith 1 White 3] White 3]
Thompson 4 Wilson 3 Wilson 3
Washington 2 Thompson 4 Brown 4
White & Brown 4 Jones 4
Wilson 3 Jones 4 Thompson 4
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Sorting: The Big Picture
Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets

/ \ | |

Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Quick sort (avg)

Demo (with sound!)

« http://www.youtube.com/watch?v=kPRAOW 1kECqg

15 Sorting Algorithms in 6 Minutes
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Selection Sort; idea

Find the smallest element, put it 15t

Find the next smallest element, put it 2nd
Find the next smallest, put it 37
Andsoon ...

HwbdhpE

1

Try it out: Selection Sort

» 31,16,54,4,2,17,6
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http://www.youtube.com/watch?v=kPRA0W1kECg

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
for (i=0; i<n; ++1i) {
j = Find index of
smallest entry in a[i..n-1]
Swap (a[il,al[3])

Runtime:
worst case
best case
average case : 13

Bubble Sort

» Take a pass through the array
— If neighboring elements are out of order, swap them.

* Repeat until no swaps needed

« Wost & avg case: O(n?)
— pretty much no reason to ever use this algorithm
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Insertion Sort

1. Sort first 2 elements.
2. Insert 3 element in order.

» (First 3 elements are now sorted.)
3. Insert 4t element in order

» (First4 elements are now sorted.)
4. Andsoon...
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How to do the insertion?

Suppose my sequence is:
16, 31, 54, 78, 32,17, 6

And I've already sorted up to 78. How to insert 32?
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Try it out: Insertion sort

» 31,16,54,4,2,17,6
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Insertion Sort: Code

void InsertionSort (Array a[0..n-1]) {
for (i=1; i<n; i++) {
for (j=i; j>0; j--) {
if (alj] < alj-11)
Swap (a[jl,alj-11)
else
break

}

Note: can instead move the Rumlmv(\%/:orst case
“hole” to minimize copying,
pying best case

as with a binary heap. R S
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Insertion Sort vs. Selection Sort

* Same worst case, avg case complexity

« Insertion better best-case

— preferable when input is “almost sorted”

« one of the best sorting algs for almost sorted case (also for
small arrays)
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Sorting: The Big Picture

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
o(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Quick sort (avg)
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Heap Sort: Sort with a Binary Heap

Worst Case Runtime:
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In-place heap sort

— Treat the initial array as a heap (via buildHeap)
— When you delete the it" element, put it at arr[n-i]
* It's not part of the heap anymore!

[al7]s[ofs]efaofs]2]1]
\ J\ J

Ll T
heap part sorted part
> Islzlelofefuofa]s]a]s]
arr[n-i]= L || J T
deleteMin () heap part sorted part
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AVL Sort

Insert nodes into an AVL Tree
Conduct an In-order traversal to extract nodes in sorted order

Worst Case Runtime:
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“Divide and Conquer”

* Very important strategy in computer science:
— Divide problem into smaller parts
— Independently solve the parts
— Combine these solutions to get overall solution

« Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
- known as Mergesort

* Idea 2 : Partition array into small items and large items,
then recursively sort the two sets
- known as Quicksort
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Mergesort

s[3f1]e

DEEE

Divide it in two at the midpoint
Sort each half (recursively)
Merge two halves together
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Mergesort Example

[8[2]9f4[5[3]1]6]

Divide -

. 82 9 4 5316
Divide —— W
Divide 82 9.4 53 16

ivi N N N N
lelement 8 2 9 4 5 3 1 6
4 \/ S S
HETED 5 4 9 35 16
Merge \./ \./
2489 1356

\
Merge 4 5 3775 5 8 9
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Merging: Two Pointer Method

» Perform merge using an auxiliary array

2falslofa]3fs]e

Ve

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Auxiliary array

Ve
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Merging: Two Pointer Method

» Perform merge using an auxiliary array

1]3]5]6]

2]als]s
z

‘ 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Auxiliary array

va
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Merging: Two Pointer Method

» Perform merge using an auxiliary array

2[a]e]o

t]3fs]s
.

‘ Auxiliary array

[1]2]a]efs] [ |
/
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Merging: Finishing Up

Starting from here...

—r
target
Left finishes up copy ij J
[ I ]
2
o target
/—\ﬁst copy this...
]
Right finishes up  ._.tnen this® i i z
]
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Merging: Two Pointer Method

 Final result

HEENDOED

‘1‘2‘3‘4‘5‘6‘ ‘ ‘ Auxiliary array

Complexity? Stability?
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Merge (A[], Temp[], left, mid, right) ({
Int i, j, k, 1, target
i = left
j =mid + 1
target = left
while (i < mid && j < right) {
if (A[i] < A[3])
Temp [target] = A[i++]
else
Temp [target] = A[j++]
target++
}
if (i > mid) //left completed//
for (k = left to target-1)
A[k] = Temp[k];
if (j > right) //right completed//
k = mid
1 = right
while (k > i)
A[l--] = A[k--]
for (k = left to target-1)
A[k] = Temp[k]

Merging
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Recursive Mergesort

MainMergesort(A[l..n], n) {
Array Temp[l..n]
Mergesort[A, Temp, 1, n]

}

Mergesort(A[], Temp[], left, right) {
if (left < right) {
mid = (left + right)/2
Mergesort (A, Temp, left, mid)
Mergesort (A, Temp, mid+l, right)
Merge (A, Temp, left, mid, right)
}
}

What is the recurrence relation?
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Mergesort: Complexity
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Iterative Mergesort

[TTTITTITITTITITITIT]
WV N W NN WV yerge by
LT T T T T T T[]
/S VSV VY

Merge by 2

Merge by 4

‘ ] Merge by 8
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Iterative Mergesort

AT AT AT AT AT AT AT ATATATATATATATATA =

/S VAN VSV VW /N Mergeby2

v / v v/ v / v g Nitneplyd
‘ Y ‘ 7 ‘ v ‘ 7 ‘ Merge by 8
‘ v [ 7 ‘ Merge by 16
[ J
| copy

Iterative Mergesort reduces copying
Complexity?
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Properties of Mergesort

In-place?

Stable?

Sorted list complexity?

Nicely extends to handle linked lists.

Multi-way merge is basis of big data sorting.

Java uses Mergesort on Collections and on
Arrays of Objects.
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