
CSE 332: Data Abstractions

Sorting I

Spring 2016

2

Announcements

3

Sorting

• Input
– an array A of data records

– a key value in each data record

– a comparison function which imposes a consistent

ordering on the keys

• Output
– “sorted” array A such that

• For any i and j, if i < j then A[i]  A[j]

4

Consistent Ordering

• The comparison function must provide a consistent

ordering on the set of possible keys

– You can compare any two keys and get back an

indication of a < b, a > b, or a = b (trichotomy)

– The comparison functions must be consistent

• If compare(a,b) says a<b, then compare(b,a) must say b>a

• If compare(a,b) says a=b, then compare(b,a) must say b=a

• If compare(a,b) says a=b, then equals(a,b) and equals(b,a)

must say a=b

5

Why Sort?

• Provides fast search:

• Find kth largest element in:

6

Space

• How much space does the sorting algorithm require?

– In-place: no more than the array or at most O(1) addition space

– out-of-place: use separate data structures, copy back

– External memory sorting – data so large that does not fit in

memory

7

Stability

A sorting algorithm is stable if:

– Items in the input with the same value end up in the

same order as when they began.

Input

Adams 1

Black 2

Brown 4

Jackson 2

Jones 4

Smith 1

Thompson 4

Washington 2

White 3

Wilson 3

Unstable sort

Adams 1

Smith 1

Washington 2

Jackson 2

Black 2

White 3

Wilson 3

Thompson 4

Brown 4

Jones 4

Stable Sort

Adams 1

Smith 1

Black 2

Jackson 2

Washington 2

White 3

Wilson 3

Brown 4

Jones 4

Thompson 4

8

Time

How fast is the algorithm?
– requirement: for any i<j, A[i] < A[j]

– This means that you need to at least check on each
element at the very minimum

• Complexity is at least:

– And you could end up checking each element against
every other element

• Complexity could be as bad as:

The big question: How close to O(n) can you get?

9

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

 sorting

Demo (with sound!)

• http://www.youtube.com/watch?v=kPRA0W1kECg

10

http://www.youtube.com/watch?v=kPRA0W1kECg

11

Selection Sort: idea

1. Find the smallest element, put it 1st

2. Find the next smallest element, put it 2nd

3. Find the next smallest, put it 3rd

4. And so on …

12

Try it out: Selection Sort

• 31, 16, 54, 4, 2, 17, 6

13

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {

 for (i=0; i<n; ++i) {

 j = Find index of

 smallest entry in a[i..n-1]

 Swap(a[i],a[j])

 }

}

Runtime:

 worst case :

 best case :

 average case :

14

Bubble Sort

• Take a pass through the array
– If neighboring elements are out of order, swap them.

• Repeat until no swaps needed

• Wost & avg case: O(n2)

– pretty much no reason to ever use this algorithm

15

Insertion Sort

1. Sort first 2 elements.

2. Insert 3rd element in order.

• (First 3 elements are now sorted.)

3. Insert 4th element in order

• (First 4 elements are now sorted.)

4. And so on…

16

How to do the insertion?

Suppose my sequence is:

 16, 31, 54, 78, 32, 17, 6

And I’ve already sorted up to 78. How to insert 32?

17

Try it out: Insertion sort

• 31, 16, 54, 4, 2, 17, 6

18

Insertion Sort: Code

void InsertionSort (Array a[0..n-1]) {

 for (i=1; i<n; i++) {

 for (j=i; j>0; j--) {

 if (a[j] < a[j-1])

 Swap(a[j],a[j-1])

 else

 break

 }

}

Runtime:

 worst case :

 best case :

 average case :

Note: can instead move the

“hole” to minimize copying,

as with a binary heap.

Insertion Sort vs. Selection Sort

• Same worst case, avg case complexity

• Insertion better best-case

– preferable when input is “almost sorted”

• one of the best sorting algs for almost sorted case (also for

small arrays)

19

20

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

 sorting

21

Heap Sort: Sort with a Binary Heap

Worst Case Runtime:

In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• It’s not part of the heap anymore!

22

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

23

AVL Sort

Worst Case Runtime:

Insert nodes into an AVL Tree

Conduct an In-order traversal to extract nodes in sorted order

24

“Divide and Conquer”

• Very important strategy in computer science:
– Divide problem into smaller parts

– Independently solve the parts

– Combine these solutions to get overall solution

• Idea 1: Divide array in half, recursively sort left and right
halves, then merge two halves
 known as Mergesort

• Idea 2 : Partition array into small items and large items,
then recursively sort the two sets
 known as Quicksort

25

Mergesort

• Divide it in two at the midpoint

• Sort each half (recursively)

• Merge two halves together

8 2 9 4 5 3 1 6

26

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2 9 4 5 3 1 6

 2 8 4 9 3 5 1 6

 2 4 8 9 1 3 5 6

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

27

Merging: Two Pointer Method

• Perform merge using an auxiliary array

2 4 8 9 1 3 5 6

Auxiliary array

28

Merging: Two Pointer Method

• Perform merge using an auxiliary array

2 4 8 9 1 3 5 6

1
Auxiliary array

29

Merging: Two Pointer Method

• Perform merge using an auxiliary array

2 4 8 9 1 3 5 6

1 2 3 4 5
Auxiliary array

30

Merging: Finishing Up

i j

target

Starting from here…

i j

target

Left finishes up copy

i j

target

first copy this…

…then this

or

Right finishes up

31

Merging: Two Pointer Method

• Final result

1 2 3 4 5 6 8 9

1 2 3 4 5 6
Auxiliary array

Complexity? Stability?

32

Merging Merge(A[], Temp[], left, mid, right) {

 Int i, j, k, l, target

 i = left

 j = mid + 1

 target = left

 while (i < mid && j < right) {

 if (A[i] < A[j])

 Temp[target] = A[i++]

 else

 Temp[target] = A[j++]

 target++

 }

 if (i > mid) //left completed//

 for (k = left to target-1)

 A[k] = Temp[k];

 if (j > right) //right completed//

 k = mid

 l = right

 while (k > i)

 A[l--] = A[k--]

 for (k = left to target-1)

 A[k] = Temp[k]

}

33

Recursive Mergesort
MainMergesort(A[1..n], n) {

 Array Temp[1..n]

 Mergesort[A, Temp, 1, n]

}

Mergesort(A[], Temp[], left, right) {

 if (left < right) {

 mid = (left + right)/2

 Mergesort(A, Temp, left, mid)

 Mergesort(A, Temp, mid+1, right)

 Merge(A, Temp, left, mid, right)

 }

}

What is the recurrence relation?

34

Mergesort: Complexity

35

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

36

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

copy

Iterative Mergesort reduces copying

Complexity?

37

Properties of Mergesort

• In-place?

• Stable?

• Sorted list complexity?

• Nicely extends to handle linked lists.

• Multi-way merge is basis of big data sorting.

• Java uses Mergesort on Collections and on

Arrays of Objects.

