
1

1

CSE 332:

Hash Tables

Hunter Zahn (for Richard Anderson)

Spring 2016

UW CSE 332, Spring 2016 2

Announcements

UW CSE 332, Spring 2016

3

AVL find, insert, delete: O(log n)

Suppose (unique) keys between 0 and 1000.

– Can we do better than O(log n)?

UW CSE 332, Spring 2016 4

Arrays for Dictionaries

Now suppose keys are first, last names

– how big is the key space?

But keyspace is sparsely populated

– <105 active students

UW CSE 332, Spring 2016

5

Hash Tables

• Map keys to a smaller array called a hash table

– via a hash function h(K)

– Find, insert, delete: O(1) on average!

hash table UW CSE 332, Spring 2016 6

Simple Integer Hash Functions

• key space K = integers

• TableSize = 10

• h(K) =

• Insert: 7, 18, 41, 34

0

1

2

3

4

5

6

7

8

9

UW CSE 332, Spring 2016

2

7

Simple Integer Hash Functions

• key space K = integers

• TableSize = 7

• h(K) = K % 7

• Insert: 7, 18, 41, 34

0

1

2

3

4

5

6

UW CSE 332, Spring 2016 8

Aside: Properties of Mod

To keep hashed values within the size of the table, we

will generally do:

h(K) = function(K) % TableSize

(In the previous examples, function(K) = K.)

Useful properties of mod:

– (a + b) % c = [(a % c) + (b % c)] % c

– (a b) % c = [(a % c) (b % c)] % c

– a % c = b % c → (a – b) % c = 0

UW CSE 332, Spring 2016

9

String Hash Functions?

What’s a good hash function for a string?

UW CSE 332, Spring 2016 10

Some String Hash Functions

key space = strings

 K = s0 s1 s2 … s m-1 (where si are chars: si  [0, 128])

1. h(K) = s0 % TableSize

2. h(K) = % TableSize

3. h(K) = % TableSize

1

0

m

i

i

s




 
 
 


1

0

128




 
 

 

m

i

i

i

s

UW CSE 332, Spring 2016

11

Hash Function Desiderata

What are good properties for a hash function?

UW CSE 332, Spring 2016 12

Designing Hash Functions

Often based on modular hashing:

 h(K) = f(K) % P
P is typically the TableSize

P is often chosen to be prime:
– Reduces likelihood of collisions due to patterns in data

– Is useful for guarantees on certain hashing strategies
(as we’ll see)

But what would be a more convenient value of P?

UW CSE 332, Spring 2016

3

13

A Fancier Hash Function

Some experimental results indicate that modular hash

functions with prime tables sizes are not ideal.

Lots of better solutions, e.g.,

jenkinsOneAtATimeHash(String key, int keyLength) {

 hash = 0;

 for (i = 0; i < key_len; i++) {

 hash += key[i];

 hash += (hash << 10);

 hash ^= (hash >> 6);

 }

 hash += (hash << 3);

 hash ^= (hash >> 11);

 hash += (hash << 15);

 return hash % TableSize;

}
UW CSE 332, Spring 2016 14

Collision Resolution

Collision: when two keys map to the same

location in the hash table.

How handle this?

UW CSE 332, Spring 2016

15

Separate Chaining

All keys that map to the same

hash value are kept in a list

(or “bucket”).

0

1

2

3

4

5

6

7

8

9

Insert:

10

22

107

12

42

UW CSE 332, Spring 2016 16

Analysis of Separate Chaining

The load factor, , of a hash table is

  = average # of elems per bucket

N

TableSize
 

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =

UW CSE 332, Spring 2016

17

Analysis of Separate Chaining

The load factor, , of a hash table is

  = average # of elems per bucket

Average cost of:
– Unsuccessful find?

– Successful find?

– Insert?

N

TableSize
 

UW CSE 332, Spring 2016 18

Alternative: Use Empty Space in the Table

0

1

2

3

4

5

6

7

8

9

Insert:

38

19

8

109

10

Try h(K).

If full, try h(K)+1.

If full, try h(K)+2.

If full, try h(K)+3.

Etc…

UW CSE 332, Spring 2016

4

19

Open Addressing

The approach on the previous slide is an example of

open addressing:
After a collision, try “next” spot. If there’s another

collision, try another, etc.

Finding the next available spot is called probing:
0th probe = h(k) % TableSize

1th probe = (h(k) + f(1)) % TableSize

2th probe = (h(k) + f(2)) % TableSize

 . . .

ith probe = (h(k) + f(i)) % TableSize

f(i) is the probing function. We’ll look at a few…
UW CSE 332, Spring 2016 20

Linear Probing

f(i) = i

• Probe sequence:

 0th probe = h(K) % TableSize

 1th probe = (h(K) + 1) % TableSize

 2th probe = (h(K) + 2) % TableSize

 . . .

 ith probe = (h(K) + i) % TableSize
UW CSE 332, Spring 2016

21

Linear Probing

0

1

2

3

4

5

6

7

8

9

Insert:

38

19

8

109

10

8

109

10

38

19

Try h(K)

If full, try h(K)+1.

If full, try h(K)+2.

If full, try h(K)+3.

Etc…

UW CSE 332, Spring 2016

Linear Probing – Clustering

22 [R. Sedgewick]

no collision

no collision

collision in

small cluster

collision in

large cluster

UW CSE 332, Spring 2016

23

Analysis of Linear Probing

• For any  < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)

– unsuccessful search:

– successful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for  > 1/2

  











2
1

1
1

2

1



 











1

1
1

2

1

UW CSE 332, Spring 2016 24 UW CSE 332, Spring 2016

5

25

Quadratic Probing

f(i) = i2

• Probe sequence:

 0th probe = h(K) % TableSize

 1th probe = (h(K) + 1) % TableSize

 2th probe = (h(K) + 4) % TableSize

 3th probe = (h(K) + 9) % TableSize

 . . .

 ith probe = (h(K) + i2) % TableSize

Less likely to

encounter

Primary

Clustering

UW CSE 332, Spring 2016 26

Quadratic Probing Example

0

1

2

3

4

5

6

7

8

9

Insert:

89

18

49

58

79

UW CSE 332, Spring 2016

27

Another Quadratic Probing Example

TableSize = 7

h(K) = K % 7

insert(76) 76 % 7 =6

insert(40) 40 % 7 =5

insert(48) 48 % 7 =6

insert(5) 5 % 7 =5

insert(55) 55 % 7 =6

insert(47) 47 % 7 =5

3

2

1

0

6

5

4

UW CSE 332, Spring 2016 28

Quadratic Probing:
Success guarantee for  < ½

Assertion #1: If T = TableSize is prime and  < ½, then
quadratic probing will find an empty slot in  T/2 probes

Assertion #2: For prime T and all 0  i,j  T/2

and i  j,

 (h(K) + i2) % T  (h(K) + j2) % T

Assertion #3: Assertion #2 proves assertion #1.

UW CSE 332, Spring 2016

29

Quadratic Probing:
Success guarantee for  < ½

We can prove assertion #2 by contradiction.

Suppose that for some i  j, 0  i,j  T/2 , prime T:

 (h(K) + i2) % T = (h(K) + j2) % T

UW CSE 332, Spring 2016 30

Quadratic Probing: Properties

• For any  < ½, quadratic probing will find an empty

slot; for bigger , quadratic probing may find a slot.

• Quadratic probing does not suffer from primary

clustering: keys hashing to the same area is ok

• But what about keys that hash to the same slot?

– Secondary Clustering!

UW CSE 332, Spring 2016

6

31

Double Hashing

Idea: given two different (good) hash functions h(K) and
g(K), it is unlikely for two keys to collide with both of them.

So…let’s try probing with a second hash function:

f(i) = i * g(K)

• Probe sequence:
 0th probe = h(K) % TableSize

 1th probe = (h(K) + g(K)) % TableSize

 2th probe = (h(K) + 2*g(K)) % TableSize

 3th probe = (h(K) + 3*g(K)) % TableSize

 . . .

 ith probe = (h(K) + i*g(K)) % TableSize

UW CSE 332, Spring 2016 32

Double Hashing Example

0

1

2

3

4

5

6

Insert(76) 76 % 7 = 6 and 5 - 76 % 5 =

Insert(93) 93 % 7 = 2 and 5 - 93 % 5 =

Insert(40) 40 % 7 = 5 and 5 - 40 % 5 =

Insert(47) 47 % 7 = 5 and 5 - 47 % 5 =

Insert(10) 10 % 7 = 3 and 5 - 10 % 5 =

Insert(55) 55 % 7 = 6 and 5 - 55 % 5 =

TableSize = 7

h(K) = K % 7

g(K) = 5 – (K % 5)

UW CSE 332, Spring 2016

33

Another Example of Double Hashing

0

1

2

3

4

5

6

7

8

9

Insert these values into the hash

table in this order. Resolve any

collisions with double hashing:

13

28

33

147

43

Hash Functions:

 T = TableSize = 10

 h(K) = K % T

 g(K) = 1 + (K/T) % (T-1)

UW CSE 332, Spring 2016 34

Analysis of Double Hashing

• Double hashing is safe for  < 1 for this case:
– h(k) = k % p

– g(k) = q – (k % q)

– 2 < q < p, and p, q are primes

• Expected # of probes (for large table sizes)
– unsuccessful search:

– successful search:

1

1 

1 1
log

1
e

 

 
 

 

35

Deletion in Separate Chaining

How do we delete an element with separate
chaining?

UW CSE 332, Spring 2016 36

Deletion in Open Addressing

0

1

2

3

4

5

6

16

23

59

76

h(k) = k % 7

Linear probing

Delete(23)

Find(59)

Insert(30)

Need to keep track of
deleted items... leave a
“marker”

 UW CSE 332, Spring 2016

7

37

When the table gets too full, create a bigger table
(usually 2x as large) and hash all the items from the
original table into the new table.

• When to rehash?
– Separate chaining: full ( = 1)

– Open addressing: half full ( = 0.5)

– When an insertion fails

– Some other threshold

• Cost of a single rehashing?

Rehashing

UW CSE 332, Spring 2016 38

Rehashing Picture

• Starting with table of size 2, double
when load factor > 1.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25

hashes

rehashes

UW CSE 332, Spring 2016

39

Amortized Analysis of Rehashing

• Cost of inserting n keys is < 3n

• suppose 2k + 1 < n < 2k+1

– Hashes = n

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

– Total = n + 2k+1 – 2 < 3n

• Example
– n = 33, Total = 33 + 64 –2 = 95 < 99

UW CSE 332, Spring 2016

Equal objects must hash the same

• The Java library (and your project hash table) make a

very important assumption that clients must satisfy…

 If c.compare(a,b) == 0, then we require

 h.hash(a) == h.hash(b)

• If you ever override equals

– You need to override hashCode also in a consistent way

– See CoreJava book, Chapter 5 for other "gotchas" with equals

40 UW CSE 332, Spring 2016

41

Hashing Summary

• Hashing is one of the most important data structures.

• Hashing has many applications where operations are
limited to find, insert, and delete.
– But what is the cost of doing, e.g., findMin?

• Can use:
– Separate chaining (easiest)

– Open hashing (memory conservation, no linked list
management)

– Java uses separate chaining

• Rehashing has good amortized complexity.

• Also has a big data version to minimize disk
accesses: extendible hashing. (See book.)

UW CSE 332, Spring 2016 42

Terminology Alert!

• We (and the book) use the terms

– “chaining” or “separate chaining”

– “open addressing”

• Very confusingly

– “open hashing” is a synonym for “chaining”

– “closed hashing” is a synonym for “open addressing”

UW CSE 332, Spring 2016

8

Hashing vs. AVL Trees

• Advantages of Hash Tables

• Advantages of AVL Trees

UW CSE 332, Spring 2016 43

