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Hash Tables 

Hunter Zahn (for Richard Anderson) 
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Announcements   
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AVL find, insert, delete:  O(log n) 

Suppose (unique) keys between 0 and 1000. 

– Can we do better than O(log n)? 
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Arrays for Dictionaries 

Now suppose keys are first, last names 

– how big is the key space? 

 

 

But keyspace is sparsely populated 

– <105 active students 
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Hash Tables 

• Map keys to a smaller array called a hash table 

– via a hash function h(K) 

– Find, insert, delete: O(1) on average! 
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Simple Integer Hash Functions 

• key space K = integers 

• TableSize = 10 

 

• h(K) =  

 

• Insert: 7, 18, 41, 34 

 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

UW CSE 332, Spring 2016 



2 

7 

Simple Integer Hash Functions 

• key space K = integers 

• TableSize = 7 

 

• h(K) = K % 7 

 

• Insert: 7, 18, 41, 34 
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Aside: Properties of Mod 

To keep hashed values within the size of the table, we 

will generally do: 

h(K) = function(K) % TableSize 

(In the previous examples, function(K) = K.) 

 

Useful properties of mod: 

– (a + b) % c = [(a % c) + (b % c)] % c 

– (a b) % c = [(a % c) (b % c)] % c 

– a % c = b % c  → (a – b) % c = 0 
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String Hash Functions? 

What’s a good hash function for a string? 
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Some String Hash Functions 

key space = strings 

    K = s0 s1 s2 … s m-1 (where si are chars:  si  [0, 128]) 

 

1. h(K) = s0 % TableSize 

   

2. h(K) =                % TableSize 

 

3. h(K) =                     % TableSize 
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Hash Function Desiderata 

What are good properties for a hash function? 
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Designing Hash Functions 

Often based on modular hashing: 

                            h(K) = f(K) % P 
P is typically the TableSize 

 

P is often chosen to be prime: 
– Reduces likelihood of collisions due to patterns in data 

– Is useful for guarantees on certain hashing strategies  
(as we’ll see) 

 

But what would be a more convenient value of P? 
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A Fancier Hash Function 

Some experimental results indicate that modular hash 

functions with prime tables sizes are not ideal.  

Lots of better solutions, e.g., 

 
jenkinsOneAtATimeHash(String key, int keyLength) {  

 hash = 0;  

 for (i = 0; i < key_len; i++) {  

  hash += key[i];  

  hash += (hash << 10);  

  hash ^= (hash >> 6);  

 }  

 hash += (hash << 3);  

 hash ^= (hash >> 11);  

 hash += (hash << 15);  

 

 return hash % TableSize;  

}  
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Collision Resolution 

Collision: when two keys map to the same 

location in the hash table.   

How handle this? 
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Separate Chaining 

All keys that map to the same 

hash value are kept in a list 

(or “bucket”). 
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Analysis of Separate Chaining 

The load factor, , of a hash table is 

          = average # of elems per bucket 
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Analysis of Separate Chaining 

The load factor, , of a hash table is 

          = average # of elems per bucket 

 
 

 

Average cost of: 
– Unsuccessful find? 

  

– Successful find? 

 

– Insert? 
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Alternative: Use Empty Space in  the Table 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Insert: 

38 

19 

8 

109 

10 

Try h(K). 

If full, try h(K)+1. 

If full, try h(K)+2. 

If full, try h(K)+3. 

Etc… 
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Open Addressing 

The approach on the previous slide is an example of  

open addressing: 
After a collision, try “next” spot.  If there’s another 

collision, try another, etc.   

 

Finding the next available spot is called probing: 
0th probe =  h(k) % TableSize 

1th probe = (h(k) + f(1)) % TableSize 

2th probe = (h(k) + f(2)) % TableSize  

   . . . 

ith probe = (h(k) + f(i)) % TableSize  

f(i) is the probing function.  We’ll look at a few… 
UW CSE 332, Spring 2016 20 

Linear Probing 

f(i) = i 

 

• Probe sequence: 

   0th probe =  h(K) % TableSize 

 1th probe = (h(K) + 1) % TableSize 

 2th probe = (h(K) + 2) % TableSize  

 . . . 

 ith probe = (h(K) + i) % TableSize  
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Linear Probing 
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Try h(K) 

If full, try h(K)+1. 

If full, try h(K)+2. 

If full, try h(K)+3. 

Etc… 
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Linear Probing – Clustering  

22 [R. Sedgewick] 

no collision 

no collision 

collision in  

small cluster 

collision in  

large cluster 
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Analysis of Linear Probing 

• For any  < 1, linear probing will find an empty slot 

• Expected # of probes (for large table sizes) 

– unsuccessful search: 

 

 

– successful search: 

 

 

• Linear probing suffers from primary clustering 

• Performance quickly degrades for  > 1/2 
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Quadratic Probing 

f(i) = i2 

 

• Probe sequence: 

   0th probe =  h(K) % TableSize 

 1th probe = (h(K) + 1) % TableSize 

 2th probe = (h(K) + 4) % TableSize  

 3th probe = (h(K) + 9) % TableSize 

 . . . 

 ith probe = (h(K) + i2) % TableSize  

Less likely to 

encounter 

Primary 

Clustering 
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Quadratic Probing Example 
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Another Quadratic Probing Example 

TableSize = 7 

h(K) = K % 7 

 

insert(76)   76 % 7 =6 

insert(40)   40 % 7 =5 

insert(48)   48 % 7 =6 

insert(5)       5 % 7 =5 

insert(55)   55 % 7 =6 

insert(47)   47 % 7 =5 
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Quadratic Probing: 
Success guarantee for  < ½ 

Assertion #1: If T = TableSize is prime and  < ½, then 
quadratic probing will find an empty slot in  T/2 probes 

 

Assertion #2: For prime T and all 0  i,j  T/2  

and i  j, 

  (h(K) + i2) % T  (h(K) + j2) % T 

 

Assertion #3: Assertion #2 proves assertion #1. 
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Quadratic Probing: 
Success guarantee for  < ½ 

We can prove assertion #2 by contradiction.  

Suppose that for some i  j, 0  i,j  T/2 , prime T: 

  (h(K) + i2) % T = (h(K) + j2) % T 
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Quadratic Probing: Properties 

• For any  < ½, quadratic probing will find an empty 

slot; for bigger , quadratic probing may find a slot. 

 

• Quadratic probing does not suffer from primary 

clustering: keys hashing to the same area is ok 

 

• But what about keys that hash to the same slot? 

– Secondary Clustering! 
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Double Hashing 

Idea: given two different (good) hash functions h(K) and 
g(K), it is unlikely for two keys to collide with both of them. 

 
So…let’s try probing with a second hash function: 
 

f(i) = i * g(K)  
 

• Probe sequence: 
   0th probe =  h(K) % TableSize 

 1th probe = (h(K) + g(K)) % TableSize 

 2th probe = (h(K) + 2*g(K)) % TableSize  

 3th probe = (h(K) + 3*g(K)) % TableSize 

 . . . 

 ith probe = (h(K) + i*g(K)) % TableSize  
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Double Hashing Example 

0 

1 

2 

3 

4 

5 

6 

Insert(76)  76 % 7 = 6  and  5 - 76 % 5 = 

Insert(93)  93 % 7 = 2  and  5 - 93 % 5 = 

Insert(40)  40 % 7 = 5  and  5 - 40 % 5 =  

Insert(47)  47 % 7 = 5  and  5 - 47 % 5 = 

Insert(10)  10 % 7 = 3  and  5 - 10 % 5 = 

Insert(55)  55 % 7 = 6  and  5 - 55 % 5 = 

TableSize = 7 

h(K) = K % 7 

g(K) = 5 – (K % 5) 
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Another Example of Double Hashing 
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Insert these values into the hash 

table in this order.  Resolve any 

collisions with double hashing: 

13 

28 

33 

147 

43 

Hash Functions: 

   T = TableSize = 10 

   h(K) = K % T 

   g(K) = 1 + (K/T) % (T-1) 
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Analysis of Double Hashing  

• Double hashing is safe for  < 1 for this case: 
– h(k) = k % p 

– g(k) = q – (k % q)  

– 2 < q < p,  and p, q are primes 
 

• Expected # of probes (for large table sizes) 
– unsuccessful search: 

 

 

– successful search: 
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Deletion in Separate Chaining 

How do we delete an element with separate 
chaining?  
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Deletion in Open Addressing 
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h(k) = k % 7 

Linear probing 

 

Delete(23) 

Find(59) 

Insert(30) 

Need to keep track of 
deleted items... leave a 
“marker” 
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When the table gets too full, create a bigger table 
(usually 2x as large) and hash all the items from the 
original table into the new table. 

 

• When to rehash? 
– Separate chaining: full ( = 1) 

– Open addressing: half full ( = 0.5) 

– When an insertion fails 

– Some other threshold 

• Cost of a single rehashing? 

Rehashing 
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Rehashing Picture 

• Starting with table of size 2, double 
when load factor > 1. 

 1    2   3    4   5    6   7    8  9   10  11 12 13 14  15  16 17 18  19 20  21 23 24  25 

hashes 

rehashes 
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Amortized Analysis of Rehashing 

• Cost of inserting n keys is < 3n 

• suppose 2k + 1 < n < 2k+1 

– Hashes = n 

– Rehashes = 2 + 22 + … + 2k = 2k+1 – 2 

– Total = n + 2k+1 – 2 < 3n 
 

• Example 
– n = 33, Total = 33 + 64 –2 = 95 < 99 
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Equal objects must hash the same 

• The Java library (and your project hash table) make a 

very important assumption that clients must satisfy… 

       If c.compare(a,b) == 0, then we require 

           h.hash(a) == h.hash(b) 

 
• If you ever override equals 

– You need to override hashCode also in a consistent way 

– See CoreJava book, Chapter 5 for other "gotchas" with equals 
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Hashing Summary 

• Hashing is one of the most important data structures. 

• Hashing has many applications where operations are 
limited to find, insert, and delete. 
– But what is the cost of doing, e.g., findMin? 

• Can use: 
– Separate chaining (easiest) 

– Open hashing (memory conservation, no linked list 
management) 

– Java uses separate chaining 

• Rehashing has good amortized complexity. 

• Also has a big data version to minimize disk 
accesses: extendible hashing.  (See book.) 
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Terminology Alert! 

• We (and the book) use the terms 

– “chaining” or “separate chaining” 

– “open addressing” 

 

• Very confusingly 

– “open hashing” is a synonym for “chaining” 

– “closed hashing” is a synonym for “open addressing” 
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Hashing vs. AVL Trees 

• Advantages of Hash Tables 

 

 

 

• Advantages of AVL Trees 

UW CSE 332, Spring 2016 43 


