CSE 332: Hash Tables

Hunter Zahn (for Richard Anderson)
Spring 2016

Announcements

AVL find, insert, delete: O(log n)

Suppose (unique) keys between 0 and 1000.

– Can we do better than O(log n)?

Arrays for Dictionaries

Now suppose keys are first, last names

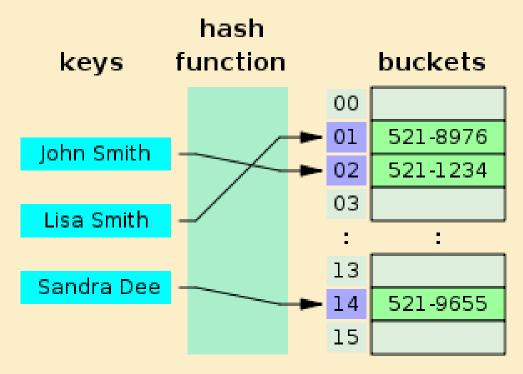
– how big is the key space?

But keyspace is sparsely populated

- <10⁵ active students

Hash Tables

- Map keys to a smaller array called a hash table
 - via a hash function h(K)
 - Find, insert, delete: O(1) on average!



Simple Integer Hash Functions

- key space K = integers
- TableSize = 10

• h(K) =

• Insert: 7, 18, 41, 34

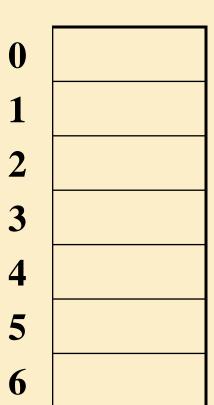
9

Simple Integer Hash Functions

- key space K = integers
- TableSize = 7

• h(K) = K % 7

• Insert: 7, 18, 41, 34



Aside: Properties of Mod

To keep hashed values within the size of the table, we will generally do:

$$h(K) = function(K) \% TableSize$$

(In the previous examples, function(K) = K.)

Useful properties of mod:

- (a + b) % c = [(a % c) + (b % c)] % c
- (a b) % c = [(a % c) (b % c)] % c
- $a \% c = b \% c \rightarrow (a b) \% c = 0$

String Hash Functions?

What's a good hash function for a string?

Some String Hash Functions

key space = strings

$$K = S_0 S_1 S_2 ... S_{m-1}$$
 (where S_i are chars: $S_i \in [0, 128]$)

- 1. $h(K) = s_0 \%$ TableSize
- 2. $h(K) = \left(\sum_{i=0}^{m-1} s_i\right)$ % TableSize
- 3. $h(K) = \left(\sum_{i=0}^{m-1} s_i \cdot 128^i\right)$ % TableSize

Hash Function Desiderata

What are good properties for a hash function?

Designing Hash Functions

Often based on modular hashing:

$$h(K) = f(K) \% P$$

P is typically the TableSize

P is often chosen to be prime:

- Reduces likelihood of collisions due to patterns in data
- Is useful for guarantees on certain hashing strategies (as we'll see)

But what would be a more convenient value of P?

A Fancier Hash Function

Some experimental results indicate that modular hash functions with prime tables sizes are not ideal.

Lots of better solutions, e.g.,

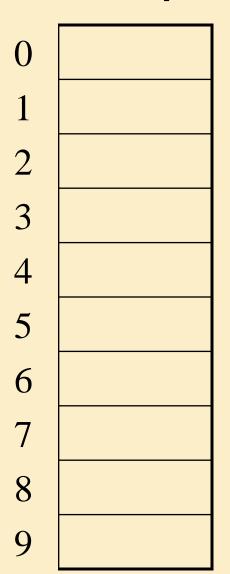
```
jenkinsOneAtATimeHash(String key, int keyLength) {
  hash = 0;
   for (i = 0; i < key len; i++) {</pre>
        hash += \text{key}[i];
        hash += (hash << 10);
        hash ^= (hash >> 6);
  hash += (hash << 3);
   hash ^= (hash >> 11);
   hash += (hash << 15);
  return hash % TableSize; UW CSE 332, Spring 2016
```

Collision Resolution

Collision: when two keys map to the same location in the hash table.

How handle this?

Separate Chaining



10	
22	
107	
12	
42	

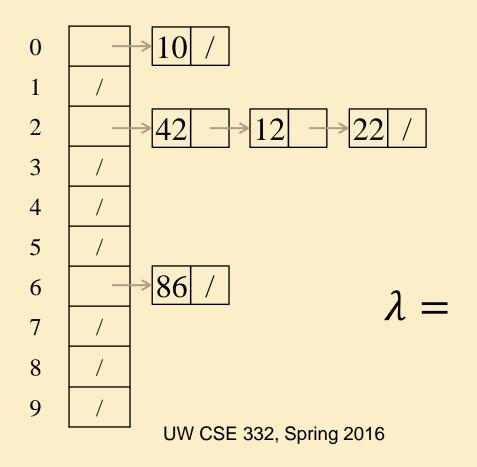
Insert:

All keys that map to the same hash value are kept in a list (or "bucket").

Analysis of Separate Chaining

The load factor, λ , of a hash table is $\lambda = \frac{1}{T^2}$

$$\lambda = \frac{N}{\text{TableSize}}$$



Analysis of Separate Chaining

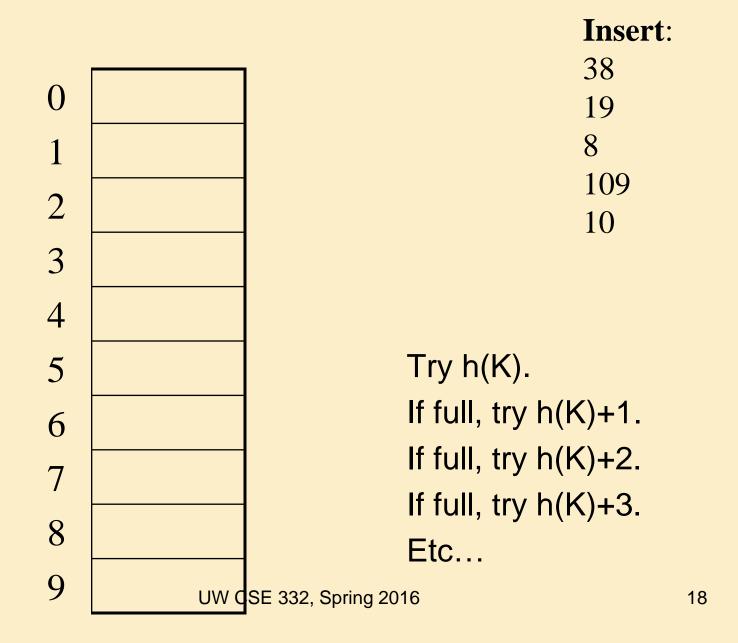
The load factor, λ , of a hash table is $\lambda = \frac{N}{\text{TableSize}}$ λ = average # of elems per bucket

$$\lambda = \frac{N}{\text{TableSize}}$$

Average cost of:

- Unsuccessful find?
- Successful find?
- Insert?

Alternative: Use Empty Space in the Table



Open Addressing

The approach on the previous slide is an example of **open addressing**:

After a collision, try "next" spot. If there's another collision, try another, etc.

Finding the next available spot is called **probing**:

```
0^{th} probe = h(k) % TableSize

1^{th} probe = (h(k) + f(1)) % TableSize

2^{th} probe = (h(k) + f(2)) % TableSize
```

 i^{th} probe = (h(k) + f(i)) % TableSize

f(i) is the probing function. We'll look at a few...

Linear Probing

$$f(i) = i$$

Probe sequence:

```
0^{th} probe = h(K) % TableSize

1^{th} probe = (h(K) + 1) % TableSize

2^{th} probe = (h(K) + 2) % TableSize
```

- - -

ith probe = (h(K) + i) % TableSize

Linear Probing

	Insert :
	38
	19
	8
	109
Try h(K)	10
If full, try $h(K)+1$.	
If full, try $h(K)+2$.	

Etc...

If full, try h(K)+3.

Linear Probing – Clustering

no collision

النافافافالالنالالالالالاقافالالاقافالالا UW CSE 332, Spring 2016 [R. Sedgewick]

collision in small cluster

collision in large cluster

Analysis of Linear Probing

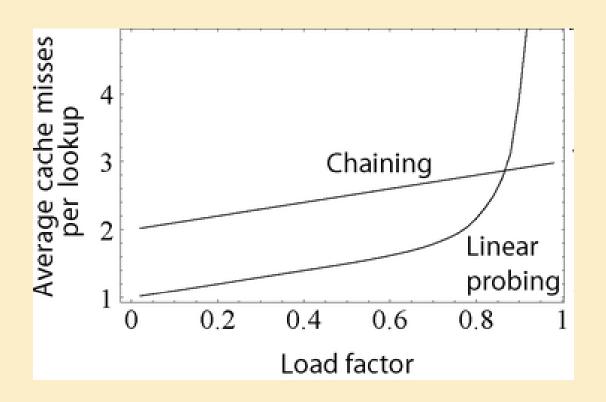
- For any λ < 1, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - unsuccessful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

- successful search:

$$\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)} \right)$$

- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2$



Quadratic Probing

$$f(i) = i^2$$

Less likely to encounter
Primary
Clustering

Probe sequence:

```
0^{th} probe = h(K) % TableSize

1^{th} probe = (h(K) + 1) % TableSize

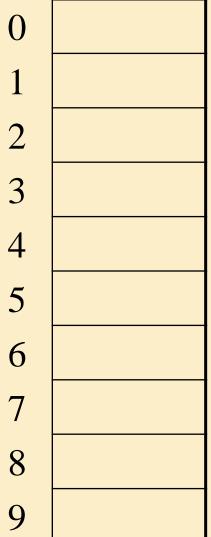
2^{th} probe = (h(K) + 4) % TableSize

3^{th} probe = (h(K) + 9) % TableSize

...

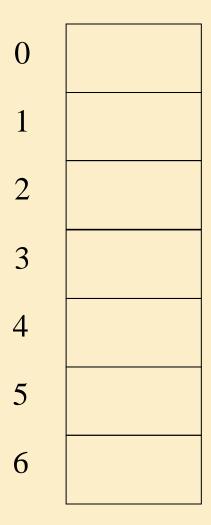
i^{th} probe = (h(K) + i^2) % TableSize
```

Quadratic Probing Example



Insert: 89

Another Quadratic Probing Example



TableSize =
$$7$$
 h(K) = K % 7

```
insert(76) 76 % 7 =6
insert(40) 40 % 7 =5
insert(48) 48 % 7 =6
insert(5) 5 % 7 =5
insert(55) 55 % 7 =6
insert(47) 47 % 7 =5
```

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

Assertion #1: If T = TableSize is **prime** and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in \leq T/2 probes

Assertion #2: For prime T and all $0 \le i, j \le T/2$ and $i \ne j$,

(b(K) $+ i^2$) & $T \ne (b(K) + i^2)$ & T

 $(h(K) + i^2) % T \neq (h(K) + j^2) % T$

Assertion #3: Assertion #2 proves assertion #1.

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

We can prove assertion #2 by contradiction. Suppose that for some $i \neq j$, $0 \leq i, j \leq T/2$, prime T: $(h(K) + i^2) % T = (h(K) + j^2) % T$

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ , quadratic probing may find a slot.
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area is ok
- But what about keys that hash to the same slot?
 - Secondary Clustering!

Double Hashing

Idea: given two different (good) hash functions h(K) and g(K), it is unlikely for two keys to collide with both of them.

So...let's try probing with a second hash function:

$$f(i) = i * g(K)$$

Probe sequence:

```
0^{th} probe = h(K) % TableSize

1^{th} probe = (h(K) + g(K)) % TableSize

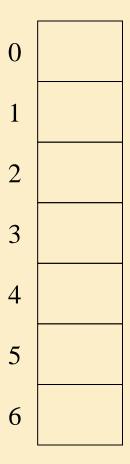
2^{th} probe = (h(K) + 2*g(K)) % TableSize

3^{th} probe = (h(K) + 3*g(K)) % TableSize

....

i^{th} probe = (h(K) + i*g(K)) % TableSize
```

Double Hashing Example

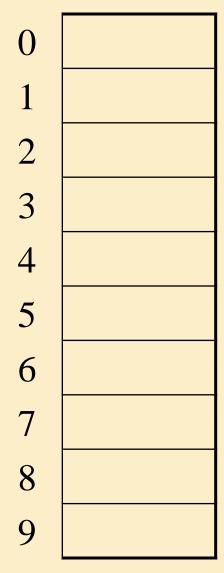


TableSize = 7

$$h(K) = K \% 7$$

 $g(K) = 5 - (K \% 5)$

Another Example of Double Hashing



Hash Functions:

$$T = TableSize = 10$$

 $h(K) = K \% T$
 $g(K) = 1 + (K/T) \% (T-1)$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13

28

33

147

43

Analysis of Double Hashing

- Double hashing is safe for λ < 1 for this case:
 - h(k) = k % p
 - g(k) = q (k % q)
 - -2 < q < p, and p, q are primes
- Expected # of probes (for large table sizes)
 - unsuccessful search:

$$\frac{1}{1-\lambda}$$

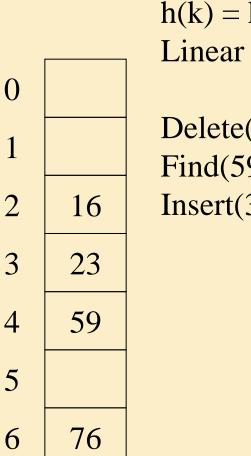
– successful search:

$$\frac{1}{\lambda} \log_e \left(\frac{1}{1-\lambda} \right)$$

Deletion in Separate Chaining

How do we delete an element with separate chaining?

Deletion in Open Addressing



h(k) = k % 7Linear probing

Delete(23) Find(59) Insert(30)

> Need to keep track of deleted items... leave a "marker"

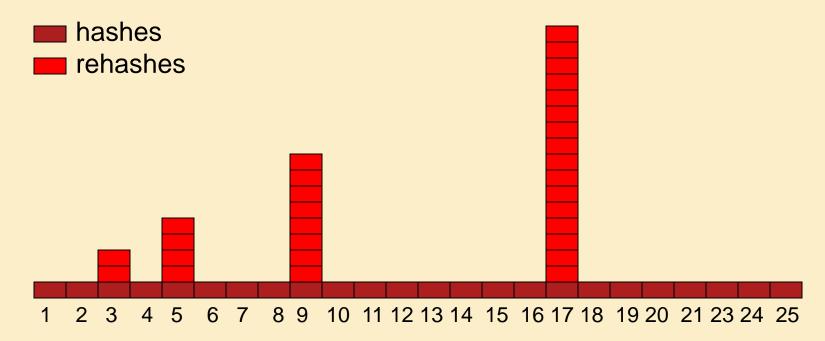
Rehashing

When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - Separate chaining: full ($\lambda = 1$)
 - Open addressing: half full ($\lambda = 0.5$)
 - When an insertion fails
 - Some other threshold
- Cost of a single rehashing?

Rehashing Picture

 Starting with table of size 2, double when load factor > 1.



Amortized Analysis of Rehashing

- Cost of inserting n keys is < 3n
- suppose $2^k + 1 \le n \le 2^{k+1}$
 - Hashes = n
 - Rehashes = $2 + 2^2 + ... + 2^k = 2^{k+1} 2$
 - $Total = n + 2^{k+1} 2 < 3n$

Example

$$- n = 33$$
, Total = $33 + 64 - 2 = 95 < 99$

Equal objects must hash the same

• The Java library (and your project hash table) make a very important assumption that clients must satisfy...

```
If c.compare(a,b) == 0, then we require
h.hash(a) == h.hash(b)
```

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
 - But what is the cost of doing, e.g., findMin?
- Can use:
 - Separate chaining (easiest)
 - Open hashing (memory conservation, no linked list management)
 - Java uses separate chaining
- Rehashing has good amortized complexity.
- Also has a big data version to minimize disk accesses: extendible hashing. (See book.)

Terminology Alert!

- We (and the book) use the terms
 - "chaining" or "separate chaining"
 - "open addressing"

- Very confusingly
 - "open hashing" is a synonym for "chaining"
 - "closed hashing" is a synonym for "open addressing"

Hashing vs. AVL Trees

Advantages of Hash Tables

Advantages of AVL Trees