
4/14/2016

1

CSE 332

Data Abstractions

B-Trees
Richard Anderson

Spring 2016

2

Announcements

• Next two weeks: Hashing and sorting

• Upcoming dates

• Friday, April 29. Midterm

3

CPU

L1 Cache

Main memory

Disk

Cycles to access:

Registers

L2 Cache

1

Random: 30,000,000

Streamed: 5000

2

30

250

4

M-ary Search Tree

Complete tree has height:

hops for find:

Runtime of find:

Consider a search tree with branching factor M:

5

• Each internal node has (up to) M-1 keys:

• Order property:

– subtree between two keys x and y

 contain leaves with values v such that x ≤ v < y

– Note the “≤”

• Leaf nodes have up to L

 sorted keys.

B+ Trees
(book calls these B-trees)

3 7 12 21

x<3

3≤x<7

7≤x<12

12≤x<21

21≤x

6

B+ Tree Structure Properties

Internal nodes
– store up to M-1 keys

– have between ⎡M/2⎤ and M children

Leaf nodes
– where data is stored

– all at the same depth

– contain between ⎡L/2⎤ and L data items

Root (special case)
– has between 2 and M children (or root could be a leaf)

4/14/2016

2

7

B+ Tree: Example
B+ Tree with M = 4 (# pointers in internal node)

and L = 5 (# data items in leaf)

1, AB..

 4, XY..

6

8

9

10

12

14

16

 17

20

22

27

28

32

34

38

39

41

44

47

 49

50

60

70

12 44

6 20 27 34 50

All leaves

at the same

depth

Data objects…

which I’ll ignore

in slides

2, GH..

 19

24

Definition for later: “neighbor” is the next sibling to the left or right.
8

Disk Friendliness

What makes B+ trees disk-friendly?

1.Many keys stored in a node

• All brought to memory/cache in one disk access.

2.Internal nodes contain only keys;

Only leaf nodes contain keys and actual data

• Much of tree structure can be loaded into memory

irrespective of data object size

• Data actually resides in disk

9 12

B+ trees vs. AVL trees

Suppose again we have n = 230 ≈ 109 items:

•Depth of AVL Tree

•Depth of B+ Tree with M = 256, L = 256

Great, but how to we actually make a B+ tree and keep

it balanced…?

10

Building a B+ Tree with Insertions

The empty

B-Tree

M = 3 L = 3

Insert(3) Insert(18)

Insert(14)

11

Insert(30)
3

14

18

3

14

18

M = 3 L = 3 12

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3

4/14/2016

3

13

Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 3
14

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3

15

Insertion Algorithm

1. Insert the key in its leaf in
sorted order

2. If the leaf ends up with L+1
items, overflow!
– Split the leaf into two nodes:

• original with ⎡(L+1)/2⎤ smaller
keys

• new one with ⎣(L+1)/2⎦ larger
keys

– Add the new child to the parent

– If the parent ends up with M+1
children, overflow!

3. If an internal node ends up with

M+1 children, overflow!

– Split the node into two nodes:

• original with ⎡(M+1)/2⎤ children

with smaller keys

• new one with ⎣(M+1)/2⎦ children

with larger keys

– Add the new child to the parent

– If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in two

and hang the new nodes under a

new root

5. Propagate keys up tree.
This makes the tree deeper!

16

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3

17

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12 16

18

30

36 40

36

38

18

40

45

M = 3 L = 3 18

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

18

30

36 40

36

38

18

40

45

M = 3 L = 3

4/14/2016

4

19

Delete(16)

3

12

14

18

30

36 40

36

38

18

40

45

3

12

14

M = 3 L = 3 20

Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

21

Delete(18)

3

12

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3 22

3

12

30

40

36

38

36

40

45

M = 3 L = 3

23

Deletion Algorithm

1.Remove the key from its leaf

2. If the leaf ends up with fewer
than ⎡L/2⎤ items, underflow!

– Adopt data from a neighbor;

update the parent

– If adopting won’t work, delete

node and merge with neighbor

– If the parent ends up with fewer

than ⎡M/2⎤ children, underflow!

24

Deletion Slide Two
3. If an internal node ends up with fewer than ⎡M/2⎤

children, underflow!

– Adopt from a neighbor;
update the parent

– If adoption won’t work,

merge with neighbor

– If the parent ends up with fewer than ⎡M/2⎤ children,
underflow!

4. If the root ends up with only one child, make the child

the new root of the tree

5. Propagate keys up through tree. This reduces the

height of the tree!

4/14/2016

5

25

Thinking about B+ Trees

• B+ Tree insertion can cause (expensive) splitting and

propagation up the tree

• B+ Tree deletion can cause (cheap) adoption or

(expensive) merging and propagation up the tree

• Split/merge/propagation is rare if M and L are large

(Why?)

• Pick branching factor M and data items/leaf L such that

each node takes one full page/block of memory/disk.

26

Complexity

• Find:

• Insert:

– find:

– Insert in leaf:

– split/propagate up:

• Claim: O(M) costs are negligible

27

Tree Names You Might Encounter

– “B-Trees”

• More general form of B+ trees, allows data at internal nodes too

• Range of children is (key1,key2) rather than [key1, key2)

– B-Trees with M = 3, L = x are called 2-3 trees

• Internal nodes can have 2 or 3 children

– B-Trees with M = 4, L = x are called 2-3-4 trees

• Internal nodes can have 2, 3, or 4 children

