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Announcements 

• Next two weeks:  Hashing and sorting 

 

• Upcoming dates 

• Friday,  April 29.  Midterm 
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M-ary Search Tree 

Complete tree has height: 

 

# hops for find: 
 

Runtime of find: 

Consider a search tree with branching factor M: 
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• Each internal node has (up to) M-1 keys: 

• Order property: 

– subtree between two keys x and y  

    contain leaves with values v such that x ≤ v < y 

– Note the  “≤” 

• Leaf nodes have up to L 

    sorted keys. 

B+ Trees 
(book calls these B-trees) 

3 7 12 21     
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B+ Tree Structure Properties 

Internal nodes  
– store up to M-1 keys 

– have between ⎡M/2⎤ and M children 

Leaf nodes 
– where data is stored 

– all at the same depth 

– contain between ⎡L/2⎤ and L data items 

Root (special case)  
– has between 2 and M children (or root could be a leaf)  
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B+ Tree: Example 
B+ Tree with M = 4 (# pointers in internal node) 

and L = 5                 (# data items in leaf) 
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Data objects… 

which I’ll ignore  

in slides 

        

                        

2, GH.. 
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Definition for later: “neighbor” is the next sibling to the left or right. 
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Disk Friendliness 

What makes B+ trees disk-friendly? 

 

1.Many keys stored in a node 

• All brought to memory/cache in one disk access. 

 

2.Internal nodes contain only keys; 

Only leaf nodes contain keys and actual data 

• Much of tree structure can be loaded into memory 

irrespective of data object size 

• Data actually resides in disk 
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B+ trees vs. AVL trees 

Suppose again we have n = 230 ≈ 109 items: 

 

•Depth of AVL Tree 

 

•Depth of B+ Tree with M = 256, L = 256 

 

 

Great, but how to we actually make a B+ tree and keep 

it balanced…? 
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Building a B+ Tree with Insertions 

The empty 

B-Tree 

M = 3 L = 3 

Insert(3) Insert(18) 
  

  

  

Insert(14) 
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Insert(12,40,45,38) 
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Insertion Algorithm 

1. Insert the key in its leaf in 
sorted order 

2. If the leaf ends up with L+1 
items, overflow! 
– Split the leaf into two nodes: 

• original with  ⎡(L+1)/2⎤ smaller 
keys 

• new one with ⎣(L+1)/2⎦ larger 
keys 

– Add the new child to the parent 

– If the parent ends up with M+1 
children, overflow! 

3. If an internal node ends up with 

M+1 children, overflow! 

– Split the node into two nodes: 

• original with  ⎡(M+1)/2⎤ children 

with smaller keys 

• new one with ⎣(M+1)/2⎦ children 

with larger keys 

– Add the new child to the parent 

– If the parent ends up with M+1 

items, overflow! 

4. Split an overflowed root in two 

and hang the new nodes under a 

new root 

5. Propagate keys up tree. 
This makes the tree deeper! 
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Delete(32) 
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And Now for Deletion… 

M = 3 L = 3 
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Delete(16) 
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Deletion Algorithm 

1.Remove the key from its leaf 

 

2. If the leaf ends up with fewer 
than ⎡L/2⎤ items, underflow! 

– Adopt data from a neighbor; 

update the parent 

– If adopting won’t work, delete 

node and merge with neighbor 

– If the parent ends up with fewer 

than ⎡M/2⎤ children, underflow! 
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Deletion Slide Two 
3. If an internal node ends up with fewer than ⎡M/2⎤ 

children, underflow! 

– Adopt from a neighbor; 

update the parent 

– If adoption won’t work, 

merge with neighbor 

– If the parent ends up with fewer than ⎡M/2⎤ children, 

underflow! 

 

4. If the root ends up with only one child, make the child 

the new root of the tree 

 

5. Propagate keys up through tree. This reduces the 

height of the tree! 
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Thinking about B+ Trees 

• B+ Tree insertion can cause (expensive) splitting and 

propagation up the tree 

• B+ Tree deletion can cause (cheap) adoption or 

(expensive) merging and propagation up the tree 

• Split/merge/propagation is rare if M and L are large    

(Why?) 

• Pick branching factor M and data items/leaf L such that 

each node takes one full page/block of memory/disk. 
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Complexity 

• Find:   

• Insert: 

– find:   

– Insert in leaf: 

– split/propagate up: 

 

 

 

• Claim:  O(M) costs are negligible       
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Tree Names You Might Encounter 

– “B-Trees” 

• More general form of B+ trees, allows data at internal nodes too 

• Range of children is (key1,key2) rather than [key1, key2) 

– B-Trees with M = 3, L = x are called 2-3 trees 

• Internal nodes can have 2 or 3 children 

– B-Trees with M = 4, L = x are called 2-3-4 trees 

• Internal nodes can have 2, 3, or 4 children 


