
4/12/2016

1

CSE 332: Data Abstractions

Memory Hierarchy

Richard Anderson

Spring 2016

CSE 332 Spring 2016 1

A typical hierarchy
 Every desktop/laptop/server is

different but here is a plausible
configuration these days

2 CSE 332 Spring 2016

 CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 insns

 get data in L2: 225/sec = 30 insns

 get data in main memory:

 222/sec = 250 insns

 get data from “new
 place” on disk:

 27/sec =8,000,000 insns

 “streamed”: 218/sec

Morals
It is much faster to do: Than:
 5 million arithmetic ops 1 disk access
 2500 L2 cache accesses 1 disk access
 400 main memory accesses 1 disk access

Why are computers built this way?
– Physical realities (speed of light, closeness to CPU)
– Cost (price per byte of different technologies)
– Disks get much bigger not much faster

• Spinning at 7200 RPM accounts for much of the slowness
and unlikely to spin faster in the future

– Speedup at higher levels makes lower levels
relatively slower

3 CSE 332 Spring 2016

Usually, it doesn’t matter . . .

The hardware automatically moves data into the caches
from main memory for you
– Replacing items already there
– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating
system to open a file or database to access some data)

So most code “just runs” but sometimes it’s worth

designing algorithms / data structures with knowledge of
memory hierarchy
– And when you do, you often need to know one more thing…

4 CSE 332 Spring 2016

Block/line size
• Moving data up the memory hierarchy is slow because of

latency (think distance-to-travel)
– May as well send more than just the one int/reference asked for

(think “giving friends a car ride doesn’t slow you down”)
– Sends nearby memory because:

• It is easy
• Likely to be used soon (think fields/arrays)

• Amount of data moved from disk into memory called the

“block” size or the “page” size
– Not under program control

• Amount of data moved from memory into cache called the
“line” size
– Not under program control

5 CSE 332 Spring 2016

Principle of Locality

Connection to data structures
• An array benefits more than a linked list from block

moves
– Language (e.g., Java) implementation can put the list nodes

anywhere, whereas array is typically contiguous memory

• Suppose you have a queue to process with 223 items of
27 bytes each on disk and the block size is 210 bytes

– An array implementation needs 220 disk accesses
– If “perfectly streamed”, > 4 seconds
– If “random places on disk”, 8000 seconds (> 2 hours)
– A list implementation in the worst case needs 223 “random”

disk accesses (> 16 hours) – probably not that bad

• Note: “array” doesn’t mean “good”
– Binary heaps “make big jumps” to percolate (different block)

6 CSE 332 Spring 2016

4/12/2016

2

BSTs?
• Looking things up in balanced binary search

trees is O(log n), so even for n = 239 (512GB)
we need not worry about minutes or hours

• Still, number of disk accesses matters
– AVL tree could have height of 55
– So each find could take about 0.5 seconds or

about 100 finds a minute
– Most of the nodes will be on disk: the tree is

shallow, but it is still many gigabytes big so the tree
cannot fit in memory
• Even if memory holds the first 25 nodes on our path, we

still need 30 disk accesses

7 CSE 332 Spring 2016

Note about numbers; moral

• All the numbers in this lecture are “ballpark”
“back of the envelope” figures

• Even if they are off by, say, a factor of 5, the
moral is the same: If your data structure is mostly
on disk, you want to minimize disk accesses

• A better data structure in this setting would
exploit the block size and relatively fast memory
access to avoid disk accesses…

8 CSE 332 Spring 2016

