

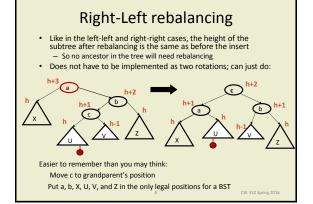
Insert: detect potential imbalance

- 1. Insert the new node as in a BST (a new leaf)
- For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
- So after recursive insertion in a subtree, detect height imbalance and perform a *rotation* to restore balance at that node. Four types of rotations
 - 1. Left-left
 - 2. Right-right
 - 3. Left-right
 - 4. Right-left
- All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:

- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
 So at most one node needs to be rebalanced

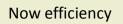
CSE 332 Spring 2016



Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 Node's left-left grandchild is too tall
 - Node's left-left grandchild is too tall
 Node's left-right grandchild is too tall
 - Node's right-left grandchild is too tall
 - Node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
 So all ancestors are now balanced

CEE 222 Series 2016



- Worst-case complexity of find: O(log n)

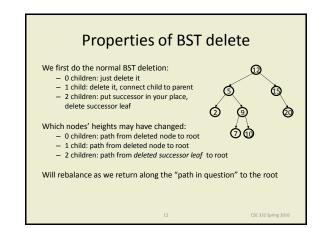
 Tree is balanced
- Worst-case complexity of insert: O(log n)

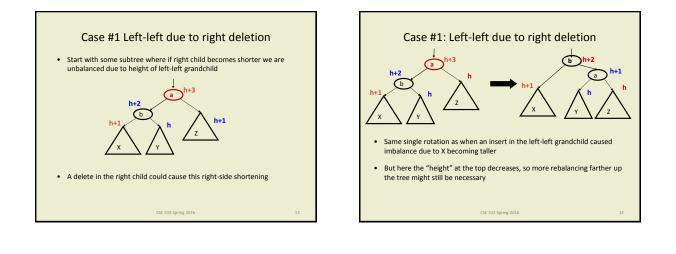
 Tree starts balanced
 - A rotation is O(1) and there's an O(log n) path to root
 - (Same complexity even without one-rotation-is-enough fact)
 - Tree ends balanced

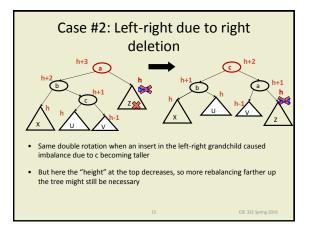
Worst-case complexity of buildTree: O(n log n)

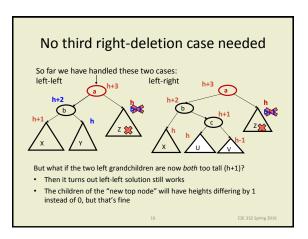
Will take some more rotation action to handle delete...

By points for AVL Delete - same type of rotations to restore balance as during insert, but multiple rotations may be needed. Details less important.
ACC EXE Spring 2011
CE EXE Spring 2011









Pros and Cons of AVL Trees

Arguments for AVL trees:

All operations logarithmic worst-case because trees are *always* balanced
 Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

- 1. Difficult to program & debug
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, our next data structure)
- If *amortized* logarithmic time is enough, use splay trees (skipping, see text)

CSE 332 Spring 2016

Now what?

- Have a data structure for the dictionary ADT that has worst-case O(log n) behavior
 - One of several interesting/fantastic balanced-tree approaches
- About to learn another balanced-tree approach: B Trees
- First, to motivate why B trees are better for really large dictionaries (say, over 1GB = 2³⁰ bytes), need to understand some *memory-hierarchy basics* Don't always assume "every memory access has an
 - Don't always assume "every memory access has an unimportant O(1) cost"
 Learn more in CSE351/333/471, focus here on relevance to data structures and efficiency

19

CSE 332 Spring 2016