
4/11/2016

1

CSE 332: Data Abstractions

Адельсо́н-Ве́льский Ла́ндис

дерево (Part II)

Richard Anderson

Spring 2016

CSE 332 Spring 2016 1

Announcements

• Project 1

• Project 2

CSE 332 Spring 2016 2

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties

1. Binary tree property

2. Balance:

left.height – right.height

3. Balance property:
balance of every node is
between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property

– Same as for BST
15

CSE 332 Spring 2016 3

Bounding the height of an AVL tree

h-1 h-2

h

CSE 332 Spring 2016 4

Let S(h) = the minimum number of nodes in an AVL
tree of height h

Can prove for all h, S(h) > h – 1 where is the golden
ratio, (1+5)/2

This shows that an AVL tree with n nodes has height at
most log n

An AVL Tree

20

9 2 15

5

10

30

17 7

0

0 0

0 1 1

2 2

3 …

3

value

height

children

Track height at all times!

10 key

CSE 332 Spring 2016 5

AVL tree operations

• AVL find:
– Same as BST find

• AVL insert:

– First BST insert, then check balance and potentially
“fix” the AVL tree

– Four different imbalance cases

• AVL delete:

– The “easy way” is lazy deletion
– Otherwise, do the deletion and then have several

imbalance cases

CSE 332 Spring 2016 6

4/11/2016

2

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion

may (or may not) have changed the node’s height
3. So after recursive insertion in a subtree, detect height imbalance and

perform a rotation to restore balance at that node. Four types of
rotations

1. Left-left
2. Right-right
3. Left-right
4. Right-left

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:
– There must be a deepest element that is imbalanced after the insert (all

descendants still balanced)
– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced

CSE 332 Spring 2016 7

Right-Left rebalancing
• Like in the left-left and right-right cases, the height of the

subtree after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

8 CSE 332 Spring 2016

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

Easier to remember than you may think:

 Move c to grandparent’s position

 Put a, b, X, U, V, and Z in the only legal positions for a BST

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

CSE 332 Spring 2016 9

Now efficiency

• Worst-case complexity of find: O(log n)

– Tree is balanced

• Worst-case complexity of insert: O(log n)
– Tree starts balanced
– A rotation is O(1) and there’s an O(log n) path to root
– (Same complexity even without one-rotation-is-enough fact)
– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Will take some more rotation action to handle delete…

10 CSE 332 Spring 2016

CSE 332 Spring 2016 11

AVL Tree Deletion
• Similar to insertion: do the delete and then rebalance

– Rotations and double rotations

– Imbalance may propagate upward so rotations at multiple nodes along
path to root may be needed (unlike with insert)

• Simple example: a deletion on the right causes the left-left grandchild to be
too tall

– Call this the left-left case, despite deletion on the right

– insert(6) insert(3) insert(7) insert(1) delete(7)

6

3

0

1

2

1

7
1

3

1 6
0 0

1

Key points for AVL Delete – same type of rotations to restore balance as during insert, but multiple
rotations may be needed. Details less important.

Properties of BST delete

We first do the normal BST deletion:
– 0 children: just delete it
– 1 child: delete it, connect child to parent
– 2 children: put successor in your place,
 delete successor leaf

Which nodes’ heights may have changed:

– 0 children: path from deleted node to root
– 1 child: path from deleted node to root
– 2 children: path from deleted successor leaf to root

Will rebalance as we return along the “path in question” to the root

12 CSE 332 Spring 2016

20 9 2

15 5

12

7 10

4/11/2016

3

Case #1 Left-left due to right deletion

CSE 332 Spring 2016 13

• Start with some subtree where if right child becomes shorter we are
unbalanced due to height of left-left grandchild

• A delete in the right child could cause this right-side shortening

a

Z

Y

b

X

h+1 h
h+1

h+2

h+3

Case #1: Left-left due to right deletion

CSE 332 Spring 2016 14

h

a

Z

Y

b

X

h+1 h

h+2

h+3 b

Z Y

a

h+1
h

h+1

h+2

X

h

• Same single rotation as when an insert in the left-left grandchild caused
imbalance due to X becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up
the tree might still be necessary

Case #2: Left-right due to right
deletion

a

h-1
h

h

V U

h+1

h+2

h+3

Z

X

b

c

h+1
h

c

X

h-1

h+1

h

h+1

V U

h+2

Z

a b

h h+1
h

• Same double rotation when an insert in the left-right grandchild caused
imbalance due to c becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up
the tree might still be necessary

CSE 332 Spring 2016 15

No third right-deletion case needed

So far we have handled these two cases:
left-left left-right

16 CSE 332 Spring 2016

h

a

Z

Y

b

X

h+1 h

h+1
h+2

h+3
a

h-1
h

h

V U

h+1

h+2

h+3

Z

X

b

c

h+1
h

But what if the two left grandchildren are now both too tall (h+1)?

• Then it turns out left-left solution still works

• The children of the “new top node” will have heights differing by 1
instead of 0, but that’s fine

And the other half

• Naturally two more mirror-image cases (not
shown here)
– Deletion in left causes right-right grandchild to be too

tall
– Deletion in left causes right-left grandchild to be too

tall
– (Deletion in left causes both right grandchildren to be

too tall, in which case the right-right solution still
works)

• And, remember, “lazy deletion” is a lot simpler
and might suffice for your needs

17 CSE 332 Spring 2016

Pros and Cons of AVL Trees

CSE 332 Spring 2016 18

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of

insert and delete

Arguments against AVL trees:

1. Difficult to program & debug
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. Most large searches are done in database-like systems on disk and use

other structures (e.g., B-trees, our next data structure)
5. If amortized logarithmic time is enough, use splay trees (skipping, see

text)

4/11/2016

4

Now what?

• Have a data structure for the dictionary ADT that has
worst-case O(log n) behavior
– One of several interesting/fantastic balanced-tree

approaches

• About to learn another balanced-tree approach: B Trees

• First, to motivate why B trees are better for really large
dictionaries (say, over 1GB = 230 bytes), need to
understand some memory-hierarchy basics
– Don’t always assume “every memory access has an

unimportant O(1) cost”
– Learn more in CSE351/333/471, focus here on relevance to

data structures and efficiency

19 CSE 332 Spring 2016

