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Announcements 

• Project 1 

• Project 2 
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The AVL Tree Data Structure 
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Structural properties 

1. Binary tree property 

2. Balance:  

left.height – right.height 

3. Balance property: 
balance of every node is 
between -1 and 1 

Result: 

Worst-case depth is 
O(log n)  

 

Ordering property 

– Same as for BST 
15 
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Bounding the height of an AVL tree 

h-1 h-2 

h 
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Let S(h) = the minimum number of nodes in an AVL 
tree of height h 
 
Can prove for all h,  S(h) > h – 1 where  is the golden 
ratio, (1+5)/2 
 
This shows that an AVL tree with n nodes has height at 
most log n 
 
 
 
 

An AVL Tree 
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Track height at all times! 
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AVL tree operations 

• AVL find:  
– Same as BST find 

 
• AVL insert:  

– First BST insert, then check balance and potentially 
“fix” the AVL tree 

– Four different imbalance cases 

 
• AVL delete:  

– The “easy way” is lazy deletion 
– Otherwise, do the deletion and then have several 

imbalance cases   
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Insert: detect potential imbalance 

1. Insert the new node as in a BST (a new leaf) 
2. For each node on the path from the root to the new leaf, the insertion 

may (or may not) have changed the node’s height 
3. So after recursive insertion in a subtree, detect height imbalance and 

perform a rotation to restore balance at that node.  Four types of 
rotations 

1. Left-left 
2. Right-right 
3. Left-right 
4. Right-left 

 

 

All the action is in defining the correct rotations to restore balance 
 

Fact that an implementation can ignore: 
– There must be a deepest element that is imbalanced after the insert (all 

descendants still balanced) 
– After rebalancing this deepest node, every node is balanced 
– So at most one node needs to be rebalanced 
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Right-Left rebalancing 
• Like in the left-left and right-right cases, the height of the 

subtree after rebalancing is the same as before the insert 
– So no ancestor in the tree will need rebalancing 

• Does not have to be implemented as two rotations; can just do: 
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Easier to remember than you may think: 

 Move c to grandparent’s position 

     Put a, b, X, U, V, and Z in the only legal positions for a BST 

Insert, summarized 

• Insert as in a BST 
 

• Check back up path for imbalance, which will be 1 of 4 cases: 
– Node’s left-left grandchild is too tall 
– Node’s left-right grandchild is too tall 
– Node’s right-left grandchild is too tall 
– Node’s right-right grandchild is too tall 

 

• Only one case occurs because tree was balanced before insert 
 

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion 
– So all ancestors are now balanced 
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Now efficiency 
 
• Worst-case complexity of find: O(log n) 

– Tree is balanced 
 

• Worst-case complexity of insert: O(log n) 
– Tree starts balanced 
– A rotation is O(1) and there’s an O(log n) path to root 
– (Same complexity even without one-rotation-is-enough fact) 
– Tree ends balanced 

 
• Worst-case complexity of buildTree: O(n log n) 
 
Will take some more rotation action to handle delete… 
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AVL Tree Deletion 
• Similar to insertion: do the delete and then rebalance 

– Rotations and double rotations  

– Imbalance may propagate upward so rotations at multiple nodes along 
path to root may be needed (unlike with insert) 
 

• Simple example: a deletion on the right causes the left-left grandchild to be 
too tall 

– Call this the left-left case, despite deletion on the right 

– insert(6) insert(3) insert(7) insert(1) delete(7) 
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Key points for AVL Delete – same type of rotations to restore balance as during insert, but multiple 
rotations may be needed.  Details less important.  

Properties of BST delete 

We first do the normal BST deletion: 
– 0 children: just delete it 
– 1 child: delete it, connect child to parent 
– 2 children: put successor in your place,  
 delete successor leaf 

 
Which nodes’ heights may have changed: 

– 0 children: path from deleted node to root 
– 1 child: path from deleted node to root 
– 2 children: path from deleted successor leaf  to root 

 
Will rebalance as we return along the “path in question” to the root 
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Case #1 Left-left due to right deletion 
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• Start with some subtree where if right child becomes shorter we are 
unbalanced due to height of left-left grandchild 

• A delete in the right child could cause this right-side shortening 
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Case #1: Left-left due to right deletion 
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• Same single rotation as when an insert in the left-left grandchild caused 
imbalance due to X becoming taller 
 

• But here the “height” at the top decreases, so more rebalancing farther up 
the tree might still be necessary 

 

Case #2: Left-right due to right 
deletion 
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• Same double rotation when an insert in the left-right grandchild caused 
imbalance due to c becoming taller 
 

• But here the “height” at the top decreases, so more rebalancing farther up 
the tree might still be necessary 
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No third right-deletion case needed 

So far we have handled these two cases: 
left-left    left-right 
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But what if the two left grandchildren are now both too tall (h+1)? 

• Then it turns out left-left solution still works 

• The children of the “new top node” will have heights differing by 1 
instead of 0, but that’s fine 

And the other half 

• Naturally two more mirror-image cases (not 
shown here) 
– Deletion in left causes right-right grandchild to be too 

tall 
– Deletion in left causes right-left grandchild to be too 

tall 
– (Deletion in left causes both right grandchildren to be 

too tall, in which case the right-right solution still 
works) 
 

• And, remember, “lazy deletion” is a lot simpler 
and might suffice for your needs 
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Pros and Cons of AVL Trees 
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Arguments for AVL trees: 
 
1. All operations logarithmic worst-case because trees are always  balanced 
2. Height balancing adds no more than a constant factor to the speed of 

insert and delete 
 
Arguments against AVL trees: 
 
1. Difficult to program & debug 
2. More space for height field 
3. Asymptotically faster but rebalancing takes a little time 
4. Most large searches are done in database-like systems on disk and use 

other structures (e.g., B-trees, our next data structure) 
5. If amortized logarithmic time is enough, use splay trees (skipping, see 

text) 
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Now what? 

• Have a data structure for the dictionary ADT that has 
worst-case O(log n) behavior 
– One of several interesting/fantastic balanced-tree 

approaches 
 

• About to learn another balanced-tree approach: B Trees 
 

• First, to motivate why B trees are better for really large 
dictionaries (say, over 1GB = 230 bytes), need to 
understand some memory-hierarchy basics 
– Don’t always assume “every memory access has an 

unimportant O(1) cost” 
– Learn more in CSE351/333/471, focus here on relevance to 

data structures and efficiency 
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