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Announcements 

• 4/11:  AVL Trees 

• 4/13:  B-Trees,  Project due 

• 4/15:  B-Trees 

• 4/18:  Hashing,  Taxes due 

• 4/20:  Hashing 

• 4/22:  Sorting 

• 4/25:  Sorting 

• 4/27:  Sorting 

• 4/29:  Midterm 
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Binary Search Tree Data Structure 
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• Structural property 
– each node has  2 children 

• Order property 
– all keys in left subtree smaller 

than root’s key 

– all keys in right subtree larger 
 than root’s key 

• Find / Insert 
– Compare with node value to go left 

or right 

– Runtime O(height) 

• Works great, unless tree is 
unbalanced 
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Balanced binary trees 

• Binary tree with 
guarantee on depths of 
leaves 

• O(log n) insert and 
delete 

• Many flavors 
– Red-black trees 

– Self-adjusting binary 
trees 

– 2-3 trees 

– AVL Trees 
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AVL Trees 

• Developed in 1962 by 
Soviet mathematicians 
Gregory Adelson-Velsky 
and Eugene Landis 

• Structural property on 
tree guarantees depth 
O(log n) 

• Rebalance operation to 
ensure property 

• Practical 

 

CSE 332 Spring 2016 5 

AVL Tree overview 

• Balance condition 

• Depth bound 

• Rotations to rebalance the tree 
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The AVL Tree Data Structure 
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Structural properties 

1. Binary tree property 

2. Balance:  

left.height – right.height 

3. Balance property: 
balance of every node is 
between -1 and 1 

Result: 

Worst-case depth is 
O(log n)  

 

Ordering property 

– Same as for BST 
15 
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The shallowness bound 

Let S(h) = the minimum number of nodes in an AVL tree 
of height h 
– S(h) grows exponentially in h, so a tree with n nodes has 

a logarithmic height 
 

• Define S(h) inductively using AVL property 
– S(-1)=0, S(0)=1, S(1)=2 
– For h 1, S(h) = 1+S(h-1)+S(h-2) 

 
• Show this recurrence grows really fast 

– Similar to Fibonacci numbers 
– Can prove for all h,  S(h) > h – 1 where 
  is the golden ratio, (1+5)/2, about 1.62 

h-1 h-2 

h 
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The Golden Ratio 

62.1
2

51





This is a special number 
 

• Golden ratio: If (a+b)/a = a/b, then a = b 
 

 

 

• We will need one special arithmetic fact about  : 

            2     = ((1+51/2)/2)2   

  = (1 + 2*51/2 + 5)/4  

  = (6 + 2*51/2)/4  

 = (3 + 51/2)/2  

  = 1 + (1 + 51/2)/2 

  = 1 +  
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The proof 

Theorem: For all h  0, S(h) > h – 1  
Proof: By induction on h 
Base cases: 

S(0) = 1 > 0 – 1 = 0   S(1) = 2 > 1 – 1  0.62 

Inductive case (k > 1):  
 Show S(k+1) > k+1 – 1 assuming S(k) > k – 1 and S(k-1) > k-1 – 1 
 

 S(k+1) = 1 + S(k) + S(k-1) by definition of S 
      > 1 + k – 1 + k-1 – 1 by induction 
                 = k + k-1 – 1  
     = k-1 ( + 1) – 1 by arithmetic (factor k-1 ) 
             = k-1 2 – 1                    by special property of  
                 = k+1 – 1                      
  
 

S(-1)=0, S(0)=1, S(1)=2 
For h 1, S(h) = 1+S(h-1)+S(h-2) 
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Good news 

Proof means that if we have an AVL tree, then find is O(log n) 
– Recall logarithms of different bases > 1 differ by only a constant factor 

 

But as we insert and delete elements, we need to: 
1. Track balance 
2. Detect imbalance 
3. Restore balance 
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Is this AVL tree balanced? 
How about after insert(30)? 
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An AVL Tree 
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AVL tree operations 

• AVL find:  
– Same as BST find 

 
• AVL insert:  

– First BST insert, then check balance and potentially 
“fix” the AVL tree 

– Four different imbalance cases 

 
• AVL delete:  

– The “easy way” is lazy deletion 
– Otherwise, do the deletion and then have several 

imbalance cases (next lecture) 
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Insert: detect potential imbalance 

1. Insert the new node as in a BST (a new leaf) 
2. For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height 
3. So after recursive insertion in a subtree, detect height imbalance 

and perform a rotation to restore balance at that node 
 

All the action is in defining the correct rotations to restore balance 
 

Fact that an implementation can ignore: 
– There must be a deepest element that is imbalanced after the 

insert (all descendants still balanced) 
– After rebalancing this deepest node, every node is balanced 
– So at most one node needs to be rebalanced 
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Case #1: Example 
Insert(6) 

Insert(3) 

Insert(1) 

 

Third insertion violates 
balance property 

• happens to be at 
the root 

 

What is the only way to fix 
this?  

 

 

6 

3 

1 

2 

1 

0 

6 

3 

1 

0 

6 
0 

CSE 332 Spring 2016 17 

Fix: Apply “Single Rotation” 
• Single rotation: The basic operation we’ll use to 

rebalance 
– Move child of unbalanced node into parent position 
– Parent becomes the “other” child (always okay in a BST!) 
– Other subtrees move in only way BST allows (next slide) 
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AVL Property violated here 

Intuition: 3 must become root 
new-parent-height = old-parent-height-before-insert 

1 
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The example generalized 
• Node imbalanced due to insertion somewhere in  
 left-left grandchild increasing height 

– 1 of 4 possible imbalance causes (other three coming) 

• First we did the insertion, which would make a  imbalanced 

a 

Z 

Y 

b 

X 

h h 

h 
h+1 

h+2 a 

Z 

Y 

b 

X 

h+1 h 

h 
h+2 

h+3 

CSE 332 Spring 2016 19 

The general left-left case 
• Node imbalanced due to insertion somewhere in  
 left-left grandchild 

– 1 of 4 possible imbalance causes (other three coming) 

• So we rotate at a, using BST facts: X < b < Y < a < Z 

• A single rotation restores balance at the node 

– To same height as before insertion, so ancestors now balanced 
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Another example: insert(16) 
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Another example: insert(16) 
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The general right-right case 

• Mirror image to left-left case, so you rotate the other way 
– Exact same concept, but need different code 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions 
in the left-right subtree or the right-left subtree 

 
Simple example:  insert(1), insert(6), insert(3) 

– First wrong idea: single rotation like we did for left-left 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions 
in the left-right subtree or the right-left subtree 

 
Simple example: insert(1), insert(6), insert(3) 

– Second wrong idea: single rotation on the child of the 
unbalanced node 
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Sometimes two wrongs make a right  

• First idea violated the BST property 
• Second idea didn’t fix balance 
• But if we do both single rotations, starting with the 

second, it works!  (And not just for this example.) 
• Double rotation:  

1. Rotate problematic child and grandchild 
2. Then rotate between self and new child 
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CSE 332 Spring 2016 26 

The general right-left case 
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Comments 
• Like in the left-left and right-right cases, the height of the 

subtree after rebalancing is the same as before the insert 
– So no ancestor in the tree will need rebalancing 

• Does not have to be implemented as two rotations; can just do: 
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Easier to remember than you may think: 

 Move c to grandparent’s position 

     Put a, b, X, U, V, and Z in the only legal positions for a BST 
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The last case: left-right 

• Mirror image of right-left 
– Again, no new concepts, only new code to write 
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Insert, summarized 

• Insert as in a BST 
 

• Check back up path for imbalance, which will be 1 of 4 cases: 
– Node’s left-left grandchild is too tall 
– Node’s left-right grandchild is too tall 
– Node’s right-left grandchild is too tall 
– Node’s right-right grandchild is too tall 

 

• Only one case occurs because tree was balanced before insert 
 

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion 
– So all ancestors are now balanced 
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