## CSE 332: Data Abstractions AVL Trees

## Richard Anderson Spring 2016

## Адельсо́н-Ве́льский Ла́ндис

дерево

## Announcements

- 4/11: AVL Trees
- 4/13: B-Trees, Project due
- 4/15: B-Trees
- 4/18: Hashing, Taxes due
- 4/20: Hashing
- 4/22: Sorting
- 4/25: Sorting
- 4/27: Sorting
- 4/29: Midterm


## Binary Search Tree Data Structure

- Structural property
- each node has $\leq 2$ children
- Order property
- all keys in left subtree smaller than root's key
- all keys in right subtree larger than root's key
- Find / Insert
- Compare with node value to go left
 or right
- Runtime O(height)
- Works great, unless tree is unbalanced


## Balanced binary trees

- Binary tree with guarantee on depths of leaves
- O(log $n$ ) insert and delete
- Many flavors
- Red-black trees
- Self-adjusting binary trees
- 2-3 trees
- AVL Trees


## AVL Trees

- Developed in 1962 by Soviet mathematicians Gregory Adelson-Velsky and Eugene Landis
- Structural property on tree guarantees depth O(log n)
- Rebalance operation to ensure property
- Practical



## AVL Tree overview

- Balance condition
- Depth bound
- Rotations to rebalance the tree



## The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance:
left.height - right.height
3. Balance property:
balance of every node is
between -1 and 1
Result:
Worst-case depth is
$\mathrm{O}(\log n)$

Ordering property

- Same as for BST


Sa
(15)

## An AVL tree?



## The shallowness bound

Let $S(h)=$ the minimum number of nodes in an AVL tree of height $h$

- $S(h)$ grows exponentially in $h$, so a tree with $n$ nodes has a logarithmic height
- Define $S(h)$ inductively using AVL property
$-S(-1)=0, S(0)=1, S(1)=2$
- For $h \geq 1, S(h)=1+S(h-1)+S(h-2)$
- Show this recurrence grows really fast
- Similar to Fibonacci numbers
- Can prove for all $h, S(h)>\phi^{h}-1$ where $\phi$ is the golden ratio, $(1+\sqrt{5}) / 2$, about 1.62

The Golden Ratio


$$
\phi=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

This is a special number

- Golden ratio: If $(\mathrm{a}+\mathrm{b}) / \mathrm{a}=\mathrm{a} / \mathrm{b}$, then $\mathrm{a}=\phi \mathrm{b}$
- We will need one special arithmetic fact about $\phi$ :
$=\left(\left(1+5^{1 / 2}\right) / 2\right)^{2}$
$=\left(1+2 * 5^{1 / 2}+5\right) / 4$
$=\left(6+2 * 5^{1 / 2}\right) / 4$
$=\left(3+5^{1 / 2}\right) / 2$
$=1+\left(1+5^{1 / 2}\right) / 2$
$S(-1)=0, S(0)=1, S(1)=2$
For $h \geq 1, S(h)=1+S(h-1)+S(h-2)$
The proof

Theorem: For all $h \geq 0, S(h)>\phi^{h}-1$
Proof: By induction on $h$
Base cases:

$$
S(0)=1>\phi^{0}-1=0 \quad S(1)=2>\phi^{1}-1 \approx 0.62
$$

Inductive case $(k>1)$ :
Show $S(k+1)>\phi^{k+1}-1$ assuming $S(k)>\phi^{k}-1$ and $S(k-1)>\phi^{k-1}-1$
$S(k+1)=1+S(k)+S(k-1) \quad$ by definition of $S$
$>1+\phi^{k}-1+\phi^{k-1}-1$ by induction
$=\phi^{k}+\phi^{k-1}-1$
$=\phi^{k-1}(\phi+1)-1 \quad$ by arithmetic (factor $\phi^{k-1}$ )
$=\phi^{k-1} \phi^{2}-1 \quad$ by special property of $\phi$
$=\phi^{k+1}-1$

## Good news

Proof means that if we have an AVL tree, then find is $O(\log n)$

- Recall logarithms of different bases $>1$ differ by only a constant factor

But as we insert and delete elements, we need to:

1. Track balance
2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
How about after insert (30) ?


## AVL tree operations

- AVL find:
- Same as BST find
- AVL insert:
- First BST insert, then check balance and potentially
"fix" the AVL tree
- Four different imbalance cases
- AVL delete:
- The "easy way" is lazy deletion
- Otherwise, do the deletion and then have several imbalance cases (next lecture)


## Case \#1: Example



Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
- Move child of unbalanced node into parent position
- Parent becomes the "other" child (always okay in a BST!)
- Other subtrees move in only way BST allows (next slide)

AVL Property violated here
 new-parent-height $=$ old-parent-height-before-insert

## The example generalized

- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
- 1 of 4 possible imbalance causes (other three coming)

First we did the insertion, which would make a imbalanced


Another example: insert(16)


The general right-right case

- Mirror image to left-left case, so you rotate the other way
- Exact same concept, but need different code


The general left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild
- 1 of 4 possible imbalance causes (other three coming)

- A single rotation restores balance at the node
- To same height as before insertion, so ancestors now balanced



## Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3) Second wrong idea: single rotation on the child of the
unbalanced node unbalanced node
(1) ${ }^{2}$
(1) ${ }^{2}$

$\longrightarrow$ 3
(6)

## Sometimes two wrongs make a right $)$

- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child


The general right-left case


## Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
- So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:


Easier to remember than you may think:
Move $c$ to grandparent's position
Put $a, b, X, U, V$, and $Z$ in the only legal positions for a BST

## The last case: left-right

- Mirror image of right-left
- Again, no new concepts, only new code to write



## Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases: - Node's left-left grandchild is too tall
- Node's left-right grandchild is too tall
- Node's right-left grandchild is too tall
- Node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion - So all ancestors are now balanced

