
4/10/2016

1

CSE 332: Data Abstractions

AVL Trees

Richard Anderson

Spring 2016

Адельсо́н-Ве́льский Ла́ндис
дерево

CSE 332 Spring 2016 1

Announcements

• 4/11: AVL Trees

• 4/13: B-Trees, Project due

• 4/15: B-Trees

• 4/18: Hashing, Taxes due

• 4/20: Hashing

• 4/22: Sorting

• 4/25: Sorting

• 4/27: Sorting

• 4/29: Midterm

CSE 332 Spring 2016 2

Binary Search Tree Data Structure

4

12 10 6 2

11 5

8

14

13

7 9

• Structural property
– each node has  2 children

• Order property
– all keys in left subtree smaller

than root’s key

– all keys in right subtree larger
 than root’s key

• Find / Insert
– Compare with node value to go left

or right

– Runtime O(height)

• Works great, unless tree is
unbalanced

CSE 332 Spring 2016 3

Balanced binary trees

• Binary tree with
guarantee on depths of
leaves

• O(log n) insert and
delete

• Many flavors
– Red-black trees

– Self-adjusting binary
trees

– 2-3 trees

– AVL Trees

CSE 332 Spring 2016 4

AVL Trees

• Developed in 1962 by
Soviet mathematicians
Gregory Adelson-Velsky
and Eugene Landis

• Structural property on
tree guarantees depth
O(log n)

• Rebalance operation to
ensure property

• Practical

CSE 332 Spring 2016 5

AVL Tree overview

• Balance condition

• Depth bound

• Rotations to rebalance the tree

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

CSE 332 Spring 2016 6

4/10/2016

2

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties

1. Binary tree property

2. Balance:

left.height – right.height

3. Balance property:
balance of every node is
between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property

– Same as for BST
15

CSE 332 Spring 2016 7

11 1

8 4

6

10 12

7

An AVL tree?

CSE 332 Spring 2016 8

3

11 7 1

8 4

6

2

5

An AVL tree?

CSE 332 Spring 2016 9

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree
of height h
– S(h) grows exponentially in h, so a tree with n nodes has

a logarithmic height

• Define S(h) inductively using AVL property
– S(-1)=0, S(0)=1, S(1)=2
– For h 1, S(h) = 1+S(h-1)+S(h-2)

• Show this recurrence grows really fast

– Similar to Fibonacci numbers
– Can prove for all h, S(h) > h – 1 where
  is the golden ratio, (1+5)/2, about 1.62

h-1 h-2

h

CSE 332 Spring 2016 10

The Golden Ratio

62.1
2

51





This is a special number

• Golden ratio: If (a+b)/a = a/b, then a = b

• We will need one special arithmetic fact about  :

 2 = ((1+51/2)/2)2

 = (1 + 2*51/2 + 5)/4

 = (6 + 2*51/2)/4

 = (3 + 51/2)/2

 = 1 + (1 + 51/2)/2

 = 1 + 

CSE 332 Spring 2016 11

The proof

Theorem: For all h  0, S(h) > h – 1
Proof: By induction on h
Base cases:

S(0) = 1 > 0 – 1 = 0 S(1) = 2 > 1 – 1  0.62

Inductive case (k > 1):
 Show S(k+1) > k+1 – 1 assuming S(k) > k – 1 and S(k-1) > k-1 – 1

 S(k+1) = 1 + S(k) + S(k-1) by definition of S
 > 1 + k – 1 + k-1 – 1 by induction
 = k + k-1 – 1
 = k-1 ( + 1) – 1 by arithmetic (factor k-1)
 = k-1 2 – 1 by special property of 
 = k+1 – 1

S(-1)=0, S(0)=1, S(1)=2
For h 1, S(h) = 1+S(h-1)+S(h-2)

CSE 332 Spring 2016 12

4/10/2016

3

Good news

Proof means that if we have an AVL tree, then find is O(log n)
– Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance

9 2

5

10

7

Is this AVL tree balanced?
How about after insert(30)?

15

20

CSE 332 Spring 2016 13

An AVL Tree

20

9 2 15

5

10

30

17 7

0

0 0

0 1 1

2 2

3 …

3

value

height

children

Track height at all times!

10 key

CSE 332 Spring 2016 14

AVL tree operations

• AVL find:
– Same as BST find

• AVL insert:

– First BST insert, then check balance and potentially
“fix” the AVL tree

– Four different imbalance cases

• AVL delete:

– The “easy way” is lazy deletion
– Otherwise, do the deletion and then have several

imbalance cases (next lecture)

CSE 332 Spring 2016 15

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3. So after recursive insertion in a subtree, detect height imbalance

and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:
– There must be a deepest element that is imbalanced after the

insert (all descendants still balanced)
– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced

CSE 332 Spring 2016 16

Case #1: Example
Insert(6)

Insert(3)

Insert(1)

Third insertion violates
balance property

• happens to be at
the root

What is the only way to fix
this?

6

3

1

2

1

0

6

3

1

0

6
0

CSE 332 Spring 2016 17

Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to

rebalance
– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)

3

1 6
0 0

1

6

3

0

1

2

AVL Property violated here

Intuition: 3 must become root
new-parent-height = old-parent-height-before-insert

1

CSE 332 Spring 2016 18

4/10/2016

4

The example generalized
• Node imbalanced due to insertion somewhere in
 left-left grandchild increasing height

– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which would make a imbalanced

a

Z

Y

b

X

h h

h
h+1

h+2 a

Z

Y

b

X

h+1 h

h
h+2

h+3

CSE 332 Spring 2016 19

The general left-left case
• Node imbalanced due to insertion somewhere in
 left-left grandchild

– 1 of 4 possible imbalance causes (other three coming)

• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h

h
h+2

h+3 b

Z Y

a

h+1 h
h

h+1

h+2

X

CSE 332 Spring 2016 20

Another example: insert(16)

10 4

22 8

15

 3 6

19

17 20

24

16

CSE 332 Spring 2016 21

Another example: insert(16)

10 4

22 8

15

 3 6

19

17 20

24

16

10 4

 8

15

 3 6

19

17

20 16

22

24

CSE 332 Spring 2016 22

The general right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code

a

Z Y

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1
h+1

h+2

CSE 332 Spring 2016 23

Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– First wrong idea: single rotation like we did for left-left

3

6

1

0

1

 2

6

1 3

1

0 0

CSE 332 Spring 2016 24

4/10/2016

5

Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– Second wrong idea: single rotation on the child of the
unbalanced node

3

6

1

0

1

 2

6

3

1

0

 1

 2

CSE 332 Spring 2016 25

Sometimes two wrongs make a right 

• First idea violated the BST property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the

second, it works! (And not just for this example.)
• Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

3

6

1

0

1

 2

6

3

1

0

 1

 2

0 0

1

1

3

6

Intuition: 3 must become root

CSE 332 Spring 2016 26

The general right-left case
a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

a

X

c

h-1

h+1 h

h

V

U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

CSE 332 Spring 2016 27

Comments
• Like in the left-left and right-right cases, the height of the

subtree after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

Easier to remember than you may think:

 Move c to grandparent’s position

 Put a, b, X, U, V, and Z in the only legal positions for a BST
CSE 332 Spring 2016 28

The last case: left-right

• Mirror image of right-left
– Again, no new concepts, only new code to write

a

h-1

h

h
h

V U

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

V U

h+2

Z

a

h

b

h

CSE 332 Spring 2016 29

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

CSE 332 Spring 2016 30

