

S(-1)=0, S(0)=1, S(1)=2		
For $h \ge 1$, $S(h) = 1+S(h-1)+S(h-2)$		
The proof		
ine proof		
Theorem: For all $h \ge 0$, $S(h) > \phi^h$	2-1	
Proof: By induction on h		
Base cases:		
$S(0) = 1 > \phi^0 - 1 = 0$	$S(1) = 2 > \phi^1 - 1 \approx 0.62$	
- (-) 1 -	$S(1) = 2 > \psi^2 - 1 \approx 0.62$	
Inductive case $(k > 1)$:		
Show $S(k+1) > \phi^{k+1} - 1$ assuming $S(k) > \phi^k - 1$ and $S(k-1) > \phi^{k-1} - 1$		
S(k+1) = 1 + S(k) + S(k-1)	by definition of S	
> $1 + \phi^k - 1 + \phi^{k-1} - 1$		
$= \phi^k + \phi^{k-1} - 1$	by induction	
	1	
	by arithmetic (factor ϕ^{k-1})	
$= \phi^{k-1} \phi^2 - 1$	by special property of ϕ	
$= \phi^{k+1} - 1$		
CSE 332 Spring 2016 12		

