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Binary Search Tree Data Structure

« Structural property
— each node has < 2 children

« QOrder property

— all keys in left subtree smaller
than root’s key

— all keys in right subtree larger
than root’s key
* Find/ Insert

— Compare with node value to go left
or right

— Runtime O(height)

« Works great, unless tree is
unbalanced




Balanced binary trees

* Binary tree with
guarantee on depths of
leaves

* O(log n) insert and
delete

 Many flavors
— Red-black trees

— Self-adjusting binary
trees

— 2-3 trees
— AVL Trees



AVL Trees

* Developed in 1962 by
Soviet mathematicians
Gregory Adelson-Velsk
and Eugene Landis

e Structural property on
tree guarantees depth
O(log n)

* Rebalance operation to
ensure property

 Practical
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AVL Tree overview

e Balance condition
* Depth bound
e Rotations to rebalance the tree




The AVL Tree Data Structure

Structural properties
1. Binary tree property
2. Balance:
left.height — right.height

Result:

Ordering property
— Same as for BST




An AVL tree?




An AVL tree?




The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree
of height h

— S(h) grows exponentially in h, so a tree with n nodes has
a logarithmic height

* Define S(h) inductively using AVL property
— S5(-1)=0, 5(0)=1, S(1)=2
— For h =1, S(h) = 1+S(h-1)+S(h-2)

* Show this recurrence grows really fast
— Similar to Fibonacci numbers
— Can prove for all h, S(h) > ¢"— 1 where
¢ is the golden ratio, (1+V5)/2, about 1.62



The GOIden Ratio a+bisl{f;};§)aislob
1++/5
P=7

This is a special number

~1.62

* Golden ratio: If (a+b) /a = a/b,thena = ¢b

* We will need one special arithmetic fact about ¢ :
= ((1+5%72)/2)2

= (1 + 2*512 + 5)/4
(6 + 2*x51/2) /4

= (3 + 51/2)/2
1 + (1 + 5%2)/2



S(-1)=0, 5(0)=1, 5(1)=2
For h 21, S(h) = 1+S(h-1)+S(h-2)

The proof

Theorem: For all h > 0,
Proof: By induction on h
Base cases:

S(0)=1>¢°-1=0 S(1)=2>¢1-1~0.62
Inductive case (k > 1):

Show S(k+1) > ¢¥*1 — 1 assuming S(k) > ¢ — 1 and S(k-1) > p*1 -1
=1+ S(k) + S(k-1) by definition of S

1+ ¢k=1+¢*¥?1 =1 by induction

=kl (p+1)—1 by arithmetic (factor 1)
= k1 p2—1 by special property of ¢



Good news

Proof means that if we have an AVL tree, then £ind is O(1og n)
— Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:
1. Track balance

2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
How about after insert (30)°?




An AVL Tree
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Track height at all times!



AVL tree operations

 AVL £ind:
— Same as BST £ind

* AVLdelete:

— The “easy way” is lazy deletion

— Otherwise, do the deletion and then have several
imbalance cases (next lecture)



Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)

2. For each node on the path from the root to the new leaf, the
insertion may (or may not) have changed the node’s height

3. So after recursive insertion in a subtree, detect height imbalance
and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:

— There must be a deepest element that is imbalanced after the
insert (all descendants still balanced)

—  After rebalancing this deepest node, every node is balanced
— So at most one node needs to be rebalanced



Case

Insert(6)
Insert(3)
Insert()

Third insertion violates
balance property

* happens to be at
the root

What is the only way to fix
this?

1: Example

0




Fix: Apply “Single Rotation”

The basic operation we’ll use to
rebalance

— Move child of unbalanced node into parent position
— Parent becomes the “other” child (always okay in a BST!)
— Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
new-parent-height = old-parent-height-before-insert



The example generalized

* Node imbalanced due to insertion somewhere in
left-left grandchild increasing height
— 1 of 4 possible imbalance causes (other three coming)
which would make a imbalanced




The general left-left case

* Node imbalanced due to insertion somewhere in

left-left grandchild
— 1 of 4 possible imbalance causes (other three coming)

e Asingle rotation restores balance at the node
— To same height as before insertion, so ancestors now balanced



Another example: insert (16)




Another example: insert (16)




The general right-right case

 Mirror image to left-left case, so you rotate the other way
— Exact same concept, but need different code

h+3
h+2

h+1




Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(l), insert(6), insert(3)
single rotation like we did for left-left
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Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(l), insert(6), insert(3)

single rotation on the child of the
unbalanced node




Sometimes two wrongs make a right ©

* First idea violated the BST property
* Second idea didn’t fix balance

e But if we do both single rotations, starting with the
second, it works! (And not just for this example.)

* Double rotation:
1. Rotate problematic child and grandchild

2. Then rotate between self and new child
Intuition: 3 must become root




The general right-left case




Comments

* Like in the left-left and right-right cases, the height of the
subtree after rebalancing is the same as before the insert

— So no ancestor in the tree will need rebalancing
* Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

Move c to grandparent’s position
Put a, b, X, U, V, and Z in the only legal positions for a BST



The last case: left-right

* Mirror image of right-left
— Again, no new concepts, only new code to write




Insert, summarized

Insert as in a BST

Check back up path for imbalance, which will be 1 of 4 cases:
— Node’s left-left grandchild is too tall
— Node’s left-right grandchild is too tall
— Node’s right-left grandchild is too tall
— Node’s right-right grandchild is too tall

Only one case occurs because tree was balanced before insert

After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion

— So all ancestors are now balanced



