CSE 332: Data Abstractions
AVL Trees

Announcements

4/11: AVL Trees

4/13:
4/15:
4/18:
4/20:
4[22:
4/25:
4[27:
4/29:

B-Trees, Project due
B-Trees
Hashing, Taxes due
Hashing
Sorting
Sorting
Sorting
Midterm

Binary Search Tree Data Structure

« Structural property
— each node has < 2 children

« QOrder property

— all keys in left subtree smaller
than root’s key

— all keys in right subtree larger
than root’s key
* Find/ Insert

— Compare with node value to go left
or right

— Runtime O(height)

« Works great, unless tree is
unbalanced

Balanced binary trees

* Binary tree with
guarantee on depths of
leaves

* O(log n) insert and
delete

 Many flavors
— Red-black trees

— Self-adjusting binary
trees

— 2-3 trees
— AVL Trees

AVL Trees

* Developed in 1962 by
Soviet mathematicians
Gregory Adelson-Velsk
and Eugene Landis

e Structural property on
tree guarantees depth
O(log n)

* Rebalance operation to
ensure property

 Practical

AN ALGORITE

G. M. A

In the present arti

le we discuss the organization of information contained in the cells of an aurto-

B
8

tic calculating machine, A three-address machine will be used for this study,

Statement of the problem. The informarion enters a machine in sequence from a certain reserve,

The information element is contained in a group of cells which are arranged one after the other, A
the

e in such a way

certain number (the information estimate), which is different for different elemeats, is contained

N

nformation element. The information must be organized in the memory of the mach

that at any moment a very large number of operations is not required o scan the information with the
given evaluation and to record the new information element.
An algorithm is proposed in which both the search and the recording are carried our in € Ig N

elements which ha

aperations, where N entered at & given moment,

A part of the memory of the machine is set aside to store the incoming information, The informa-

tion clements are arranged there in their order of eatry, Moreover, in another part of the memary a

““reference board' [1] is formed, each cell of which corresponds 1o os

)i each of its cells has no wore thao one left cell,
ctial

ion, for each cell of the wee, all the cells which are subordinate to a left (right)

The reference board is a dyadic tree (Figure 1

20d no more than one right cell subordinated to it. Direct subordination induces subordination (pe

ordering). In addi

directly subordinate cell, will be arranged further to the left (right) than the given cell. Moreover, we
ne

assume that there is a cell (the head) to which all the others are subordinate. By wansitivity, the con-

e e??

£ ther to the right et mn b
further to the right’” extends to

to the left" and e

aggregate becomes ordered, The

, & given order of cells in a

order of arrangement of the estimates of the corresponding in

we shall consider the estimates as increasing from left to right)

cell of the reference board, a place is indicated where the corresponding
The addresses of the cel

In the first address of each

information element is locared,

s of the reference board, which are directly

subordinate on the second and third

left and right respectively to the given cell, are located in

rectly subozdinate cells on either side, then there is zero in the corre-

Ifacelll

« The head address is stored in a cerrain fixed cel

the sequence of the cells of the tree a chain in whic

AVL Tree overview

e Balance condition
* Depth bound
e Rotations to rebalance the tree

The AVL Tree Data Structure

Structural properties
1. Binary tree property
2. Balance:
left.height — right.height

Result:

Ordering property
— Same as for BST

An AVL tree?

An AVL tree?

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree
of height h

— S(h) grows exponentially in h, so a tree with n nodes has
a logarithmic height

* Define S(h) inductively using AVL property
— S5(-1)=0, 5(0)=1, S(1)=2
— For h =1, S(h) = 1+S(h-1)+S(h-2)

* Show this recurrence grows really fast
— Similar to Fibonacci numbers
— Can prove for all h, S(h) > ¢"— 1 where
¢ is the golden ratio, (1+V5)/2, about 1.62

The GOIden Ratio a+bisl{f;};§)aislob
1++/5
P=7

This is a special number

~1.62

* Golden ratio: If (a+b) /a = a/b,thena = ¢b

* We will need one special arithmetic fact about ¢ :
= ((1+5%72)/2)2

= (1 + 2*512 + 5)/4
(6 + 2*x51/2) /4

= (3 + 51/2)/2
1 + (1 + 5%2)/2

S(-1)=0, 5(0)=1, 5(1)=2
For h 21, S(h) = 1+S(h-1)+S(h-2)

The proof

Theorem: For all h > 0,
Proof: By induction on h
Base cases:

S(0)=1>¢°-1=0 S(1)=2>¢1-1~0.62
Inductive case (k > 1):

Show S(k+1) > ¢¥*1 — 1 assuming S(k) > ¢ — 1 and S(k-1) > p*1 -1
=1+ S(k) + S(k-1) by definition of S

1+ ¢k=1+¢*¥?1 =1 by induction

=kl (p+1)—1 by arithmetic (factor 1)
= k1 p2—1 by special property of ¢

Good news

Proof means that if we have an AVL tree, then £ind is O(1og n)
— Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:
1. Track balance

2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
How about after insert (30)°?

An AVL Tree

10

10

20 /
/

\

key

value

children

Track height at all times!

AVL tree operations

 AVL £ind:
— Same as BST £ind

* AVLdelete:

— The “easy way” is lazy deletion

— Otherwise, do the deletion and then have several
imbalance cases (next lecture)

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)

2. For each node on the path from the root to the new leaf, the
insertion may (or may not) have changed the node’s height

3. So after recursive insertion in a subtree, detect height imbalance
and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:

— There must be a deepest element that is imbalanced after the
insert (all descendants still balanced)

— After rebalancing this deepest node, every node is balanced
— So at most one node needs to be rebalanced

Case

Insert(6)
Insert(3)
Insert()

Third insertion violates
balance property

* happens to be at
the root

What is the only way to fix
this?

1: Example

0

Fix: Apply “Single Rotation”

The basic operation we’ll use to
rebalance

— Move child of unbalanced node into parent position
— Parent becomes the “other” child (always okay in a BST!)
— Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
new-parent-height = old-parent-height-before-insert

The example generalized

* Node imbalanced due to insertion somewhere in
left-left grandchild increasing height
— 1 of 4 possible imbalance causes (other three coming)
which would make a imbalanced

The general left-left case

* Node imbalanced due to insertion somewhere in

left-left grandchild
— 1 of 4 possible imbalance causes (other three coming)

e Asingle rotation restores balance at the node
— To same height as before insertion, so ancestors now balanced

Another example: insert (16)

Another example: insert (16)

The general right-right case

 Mirror image to left-left case, so you rotate the other way
— Exact same concept, but need different code

h+3
h+2

h+1

Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(l), insert(6), insert(3)
single rotation like we did for left-left

2}_}

Two cases to go

Unfortunately, single rotations are not enough for insertions
in the left-right subtree or the right-left subtree

Simple example: insert(l), insert(6), insert(3)

single rotation on the child of the
unbalanced node

Sometimes two wrongs make a right ©

* First idea violated the BST property
* Second idea didn’t fix balance

e But if we do both single rotations, starting with the
second, it works! (And not just for this example.)

* Double rotation:
1. Rotate problematic child and grandchild

2. Then rotate between self and new child
Intuition: 3 must become root

The general right-left case

Comments

* Like in the left-left and right-right cases, the height of the
subtree after rebalancing is the same as before the insert

— So no ancestor in the tree will need rebalancing
* Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

Move c to grandparent’s position
Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

* Mirror image of right-left
— Again, no new concepts, only new code to write

Insert, summarized

Insert as in a BST

Check back up path for imbalance, which will be 1 of 4 cases:
— Node’s left-left grandchild is too tall
— Node’s left-right grandchild is too tall
— Node’s right-left grandchild is too tall
— Node’s right-right grandchild is too tall

Only one case occurs because tree was balanced before insert

After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion

— So all ancestors are now balanced

