CSE 332: Data
ADbstractions
Binary Search Trees

Richard Anderson
Spring 2016

Announcements

Fun with sums

ADTs Seen So Far

e Stack * Priority Queue
— Push — Insert
— Pop — DeleteMin
* Queue
— Enqueue None of these support “find”

— Dequeue

The Dictionary ADT

e Data:

— a set of
(key, value) pairs

* Operations:
— Insert (key, value)
— Find (key)
— Remove (key)

seitz,

anderson

anderson
Richard, Anderson,..;

seitz
Steve
Seitz
CSE 592

anderson
Richard

Anderson
CSE 582

kainby87
Hyeln
Kim

CSE 220

Implementations

« Unsorted Linked-list
* Unsorted array

« Sorted array

Binary Trees

* Binary tree is
— aroot
— left subtree (maybe empty)
— right subtree (maybe empty)

* Representation:

Data

left right
pointer | pointer

Binary Tree: Representation

Tree Traversals

A traversal Is an order for
visiting all the nodes of a tree (+)

Three types: O C
» Pre-order: Root, left subtree, right subtree 9 @

* In-order: Left subtree, root, right subtree

« Post-order: Left subtree, right subtree, root (an expression tree)

Inorder Traversal

void traverse (BNode t) {
if (t '= NULL)

traverse (t.left);

process t.element;

traverse (t.right);

10

Binary Tree: Special Cases

0 0 A @
;-
©EOE @@G@ C

oJO

11

Binary Tree: Some Numbers...

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:
— max # of leaves:

— max # of nodes:
— min # of leaves:

— min # of nodes:

12

Binary Search Tree Data Structure

e Structural property
— each node has < 2 children

®
« QOrder property

— all keys in left subtree smaller
than root’s key e @

— all keys in right subtree larger

than root’s key 9 @ @ @

@ O 4
L3

13

Example and Counter-Example

BINARY SEARCH TREES?

Find In BST, Recursive

Node Find (Object key,
Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find (key,
root.left) ;
else if (key > root.key)
return Find (key,
root.right) ;

else
return root;

15

Find In BST, lterative

Node Find (Object key,
Node root) {

while (root !'= NULL &&
root.key != key) ({
if (key < root.key)
root = root.left;
else
root = root.right;

}

return root;

16

Bonus: FiIndMin/FindMax

* Find minimum

e Find maximum

17

Insert In BST

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves — easy!

18

BuildTree for BST

« Suppose keys 1, 2, 3,4,5, 6, 7, 8,9 are inserted
Into an initially empty BST.

If inserted in given order,
what is the tree? What
big-O runtime for this kind
of sorted input?

If iInserted In reverse

order, what iIs the tree?

What big-O runtime for

this kind of sorted input? 19

BuildTree for BST

« Suppose keys 1, 2, 3,4,5, 6, 7, 8,9 are inserted
Into an initially empty BST.

— If inserted median first, then left median, right median,
etc., what is the tree? What is the big-O runtime for
this kind of sorted input?

20

Deletion In BST

Why might deletion be harder than insertion?

21

Deletion

Removing an item disrupts the tree structure.

Basic idea: find the node that is to be
removed. Then “fix” the tree so that it is still a
binary search tree.

Three cases:

— node has no children (leaf node)
— node has one child

— node has two children

22

Deletion — The Leaf Case

Delete(17)

23

Deletion — The One Child Case

Delete(15)

24

Deletion: The Two Child Case

Delete(5)

What can we replace 5 with?

25

Deletion — The Two Child Case

ldea: Replace the deleted node with a value
between the two child subtrees

Options:
« succ from right subtree: findMin(t.right)
- pred from left subtree: findMax(t.left)

Now delete the original node containing succ or pred
« Leaf or one child case — easy!

26

Finally. ..

Original node containing
7 gets deleted

27

Balanced BST

Observations
« BST: the shallower the better!
« For aBST with n nodes
— Average depth (averaged over all possible
Insertion orderings) is O(log n)
— Worst case maximum depth is O(n)

 Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n) — strong enough!
2. IS easy to maintain — not too strong!

