CSE 332: Data Abstractions

Leftover Asymptotic Analysis
Spring 2016
Richard Anderson
Lecture 4a

Announcements

- Homework \#1 due Wednesday, April 6

Definition of Order Notation

- $h(n) \in O(f(n))$ Big-O "Order" if there exist positive constants c and n_{0} such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$
$\mathrm{O}(\mathrm{f}(\mathrm{n}))$ defines a class (set) of functions

Examples

- $3 n^{2}+2 n \log n$ is $O\left(n^{2}\right)$
- $3 n^{2}+2 n \log n$ is $O\left(n^{3}\right)$
- n^{2} is $\mathrm{O}\left(2 \mathrm{n}^{2}+14\right)$

Asymptotic Lower Bounds

- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c g(n)$ for all $n \geq$ n_{0}

Asymptotic Tight Bound

- $\theta(f(n))$ is the set of all functions asymptotically equal to f (n)
- $h(n) \in \theta(f(n))$ iff $h(n) \in \mathrm{O}(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to:

$$
\lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0
$$

Full Set of Asymptotic Bounds

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- o(f(n)) is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to f (n)

Formal Definitions (for reference)

- $h(n) \in O(f(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$

- $h(n) \in o(f(n))$ iff

There exists an $n_{0}>0$ such that $h(n)<c f(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / f(n)=0$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c g(n)$ for all $n \geq n_{0}$

- $\quad h(n) \in \omega(g(n))$ iff

There exists an $n_{0}>0$ such that $h(n)>c g(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / g(n)=\infty$
- $h(n) \in \theta(f(n))$ iff
$h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	\leq
Ω	\geq
θ	$=$
0	$<$
ω	$>$

Complexity cases (revisited)

Problem size \mathbf{N}

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size \mathbf{N}
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size \mathbf{N}
- Average-case complexity: avg \# steps algorithm takes on random inputs of size \mathbf{N}
- Amortized complexity: max total \# steps algorithm takes on M "most challenging" consecutive inputs of size \mathbf{N}, divided by \mathbf{M} (i.e., divide the max total by \mathbf{M}).

