CSE 332: Data Abstractions

Asymptotic Analysis

Spring 2016 Richard Anderson Lecture 3

Announcements

- Homework requires you get the textbook (Either 2nd or 3rd Edition)
- Section Thursday
- Homework #1 out today (Wednesday)

 Due at the beginning of class next Wednesday(Apr 6).
- Program Assignment #1 is available
 - Get environment set up and compile the program by Thursday

	Linear Search	Binary Search
Best Case	4	5 at [middle]
Worst Case	3n+3	7 [log n] + 9

Changing base \rightarrow multiply by constant

- For example: $\log_2 x = 3.22 \log_{10} x$
- More generally

$$\log_A n = \left(\frac{1}{\log_B A}\right) \log_B n$$

 Means we can ignore the base for asymptotic analysis (since we're ignoring constant multipliers)

Example

 $h(n) \in O(f(n))$ iff there exist positive constants c and n_o such that: $h(n) \le c f(n)$ for all $n \ge n_o$

Example:

 $100n^2 + 1000 \le 1 (n^3 + 2n^2)$ for all $n \ge 100$

So $100n^2 + 1000 \in O(n^3 + 2n^2)$

Asymptotic Lower Bounds

- Ω(g(n)) is the set of all functions asymptotically greater than or equal to g(n)
- $h(n) \in \Omega(g(n))$ iff There exist c>0 and $n_0>0$ such that $h(n) \ge c g(n)$ for all $n \ge n_0$

Asymptotic Tight Bound

θ(f(n)) is the set of all functions asymptotically equal to f

 (n)

26

• $h(n) \in \Theta(f(n))$ iff $h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$ - This is equivalent to: $\lim_{n \to \infty} h(n)/f(n) = c \neq 0$

25

Asymptotic Notation	Mathematics Relation
0	≤
Ω	≥
θ	=
0	<
ω	>

Bounds vs. Cases

Two <u>orthogonal</u> axes:

- Bound Flavor

 - Upper bound (O, o)
 Lower bound (Ω, ω)
 - Asymptotically tight (θ)
- Analysis Case
 - Worst Case (Adversary), T_{worst}(n)
 - Average Case, T_{avg}(n)
 Best Case, T_{best}(n)
 Amortized, T_{amort}(n)

One can estimate the bounds for any given case.