CSE 332: Data Abstractions

Asymptotic Analysis

Spring 2016
Richard Anderson
Lecture 3

Announcements

- Homework requires you get the textbook (Either 2 ${ }^{\text {nd }}$ or $3^{\text {rd }}$ Edition)
- Section Thursday
- Homework \#1 out today (Wednesday)
- Due at the beginning of class next Wednesday(Apr 6).
- Program Assignment \#1 is available
- Get environment set up and compile the program by Thursday

Measuring performance

Binary Search Analysis

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 \\
\hline
\end{array}
$$

```
bool BinArrayContains( int array[], int low, int high, int key ) {
    // The subarray is empty
```

 if (low > high) return false;
 // Search this subarray recursively
 // Search this subarray recursively
 int mid $=($ high + low $)$
int mid $=$ (high + low $)$
if (key $=$ array [mid] $),$
return true;
\} else if (key < array [mid])
return BinArrayFind (array, low, mid-1, key);
\} else \{ Binarrayrind array, low, mid-1, key);
return BinArrayFind (array, mid+1, high, key);
Best case:
Worst case:
,
(

Best Case:
// Found it!
\}
return false;
\}
bool LinearArrayContains (int array[], int n, int key) \{ for (int $i=0$; $i<n$; i++)
if (array[i] == key)
return true;

Linear Search Analysis

Worst Case:

Empirical comparison

Linear search

Gives additional information

Asymptotic Analysis

- Consider only the order of the running time
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of same algorithm

Asymptotic Analysis

- To find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is
- Binary search is

$$
T_{\text {worst }}^{L S}(n)=3 n+3 \in O(n)
$$

$$
T_{\text {worst }}^{B S}(n)=7\left\lfloor\log _{2} n\right\rfloor+9 \in O(\log n)
$$

Remember: the "fastest" algorithm has the slowest growing function for its runtime

Asymptotic Analysis

Eliminate low order terms

Properties of Logs

Basic:

- $A^{\log _{A} B}=B$
- $\log _{A} A=$

Independent of base:

- $\log (\mathrm{AB})=$
- $\log (\mathrm{A} / \mathrm{B})=$
- $\log \left(\mathrm{A}^{\mathrm{B}}\right)=$
- $\log \left(\left(\mathrm{A}^{\mathrm{B}}\right)^{\mathrm{C}}\right)=$

Properties of Logs

Changing base \rightarrow multiply by constant

- For example: $\log _{2} x=3.22 \log _{10} x$
- More generally

$$
\log _{A} n=\left(\frac{1}{\log _{B} A}\right) \log _{B} n
$$

- Means we can ignore the base for asymptotic analysis (since we're ignoring constant multipliers)

Another example

- Eliminate low-order terms
- Eliminate constant coefficients

$$
16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}
$$

Comparing functions

- $f(n)$ is an upper bound for $h(n)$
if $h(n) \leq f(n)$ for all n

This is too strict - we mostly care about large n

Still too strict if we want to ignore scale factors

Definition of Order Notation

- $h(n) \in O(f(n)) \quad B i g-O$ "Order"
if there exist positive constants c and n_{0} such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$
$O(f(n))$ defines a class (set) of functions

Although not yet apparent, as n gets "sufficiently large", $a(n)$ will be "greater than or equal to" $b(n)$

Order Notation: Example

$$
\text { So } 100 n^{2}+1000 \in \mathrm{O}\left(n^{3}+2 n^{2}\right)
$$

Example

$h(n) \in O(f(n)) \quad$ iff there exist positive constants c and n_{0} such that: $h(n) \leq c f(n)$ for all $n \geq n_{0}$

Example:

$$
\begin{array}{r}
100 n^{2}+1000 \leq 1\left(n^{3}+2 n^{2}\right) \text { for all } n \geq 100 \\
\text { So } 100 n^{2}+1000 \in \mathrm{O}\left(n^{3}+2 n^{2}\right)
\end{array}
$$

Another Example: Binary Search

$h(n) \in O(f(n)) \quad$ iff there exist positive constants c and n_{0} such that:
$h(n) \leq c f(n)$ for all $n \geq n_{0}$

Is $7 \log _{2} n+9 \in \mathrm{O}\left(\log _{2} \mathrm{n}\right)$?

Order Notation:
 Worst Case Binary Search

$100 n^{2}+1000 \leq 1\left(n^{3}+2 n^{2}\right)$ for all $n \geq 100$
$100 n^{2}+1000 \leq 1 / 2\left(n^{3}+2 n^{2}\right)$ for all $n \geq 198$
$h(n) \in \mathrm{O}(f(n)) \quad$ iff there exist positive constants c and n_{0} such that:
$h(n) \leq c f(n)$ for all $n \geq n_{0}$

Example:
Another Example: Binary Search
$h(n) \in \mathrm{O}(f(n)) \quad$ iff there exist positive constants c and n_{0}
such that:
$h(n) \leq c f(n)$ for all $n \geq n_{0}$
Is $7 \log _{2} n+9 \in \mathrm{O}\left(\log _{2} \mathrm{n}\right)$?

Some Notes on Notation

Sometimes you'll see (e.g., in Weiss)

$$
h(n)=\mathrm{O}(f(n))
$$

or

$$
h(n) \text { is } O(f(n))
$$

These are equivalent to

$$
h(n) \in O(f(n))
$$

Big-O: Common Names
$\sqrt{\text { - constant: }} \begin{array}{lll}\text { - logarithmic: } & O(1) & O(\log n)\left(\log n, \log n^{2} \in O(\log n)\right) \\ \text { - linear: } & O(n) & \\ \text { - log-linear: } & O(n \log n) & \\ \text { - quadratic: } & O\left(n^{2}\right) & \\ \text { - cubic: } & O\left(n^{3}\right) & \\ \text { - polynomial: } & O\left(n^{k}\right) & \text { (k is a constant) } \\ \text { - exponential: } & O\left(c^{n}\right) & \text { (c is a constant > 1) }\end{array}$

Asymptotic Lower Bounds

- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c \mathrm{~g}(n)$ for all $n \geq$
n_{0}

Asymptotic Tight Bound

- $\theta(f(n))$ is the set of all functions asymptotically equal to f (n)
- $h(n) \in \theta(f(n))$ iff
$h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to:

$$
\lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0
$$

Full Set of Asymptotic Bounds

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- o(f(n)) is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to f (n)

Formal Definitions

- $h(n) \in O(f(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$

- $h(n) \in o(f(n))$ iff

There exists an $n_{0}>0$ such that $h(n)<c f(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to $\lim _{n \rightarrow \infty} h(n) / f(n)=0$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c \mathrm{~g}(n)$ for all $n \geq n_{0}$

- $h(n) \in \omega(g(n))$ iff

There exists an $n_{0}>0$ such that $h(n)>c \mathrm{~g}(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\quad \lim h(n) / g(n)=\infty$
- $h(n) \in \theta(f(n))$ iff
$h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	\leq
Ω	\geq
θ	$=$
0	$<$
ω	$>$

Complexity cases (revisited)

Problem size \mathbf{N}

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size \mathbf{N}
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size N
- Average-case complexity: avg \# steps algorithm takes on random inputs of size \mathbf{N}
- Amortized complexity: max total \# steps algorithm takes on M "most challenging" consecutive inputs of size N , divided by M (i.e., divide the max total by M).

Bounds vs. Cases

Two orthogonal axes:

- Bound Flavor
- Upper bound (0,0)
- Lower bound (Ω, ω)
- Asymptotically tight (θ)
- Analysis Case
- Worst Case (Adversary), $T_{\text {worst }}(n)$
- Average Case, $T_{\text {avg }}(n)$
- Best Case, $T_{\text {best }}(n)$
- Amortized, $T_{\text {amort }}(n)$

One can estimate the bounds for any given case.

