CSE 332: Data Abstractions

Asymptotic Analysis
Spring 2016
Richard Anderson
Lecture 3

Announcements

e Homework requires you get the textbook (Either 2"
or 34 Edition)

e Section Thursday

e Homework #1 out today (Wednesday)

— Due at the beginning of class
next Wednesday(Apr 6).

e Program Assignment #1 is available

— Get environment set up and compile the program by
Thursday

Measuring performance

Linear Search Analysis

bool LinearArrayContains (int arrayl[], int n, int key) {
for(int 1 = 0; 1 < n,; 1i++) {
1f(arrayl[i] == key)
// Found it! Best Case:

return true;

}

return false;
Worst Case:

Binary Searckt

Analysis

2

3|5

16

37| 50

/3

/5

int key) {

bool BinArrayContains(int arrayl[], int low, int high,
// The subarray is empty
if(low > high) return false;
// Search this subarray recursively
int mid = (high + low) / 2;
if(key == array[mid]) {
return true;
} else if(key < array[mid]) {
return BinArrayFind(array, low, mid-1, key);
} else {

return BinArrayFind(array, mid+l1,

high, key);

Best case:

Worst case:

Solving Recurrence Relations

Determine the recurrence relation and base case(s).

“Expand” the original relation to find an equivalent expression in terms of
the number of expansions (k).

Find a closed-form expression by setting k to a value which reduces the
problem to a base case

Linear Search vs Binary Search

Linear Search Binary Search

Best Case 4 5 at [middle]

Worst Case 3n+3 7 Lllog n] + 9

Empirical comparison

200 200
180 | 180}
160 160}
time ' 140
(# Ops) 120 120F
100} 100
80| 80
60 60
20
20}
0 1 1 = 2) L 2 . 8 1 O L 1 1 1 Il L
0 20 40 60 80 100 120 140 160 180 200 0 20 4 60 80 100 120 140 160 180 200

N (= array size) N (= array size)

Linear search Binary search

Gives additional information

Asymptotic Analysis
e Consider only the order of the running time

— A valuable tool when the input gets “large”

— lIgnores the effects of different machines or different
implementations of same algorithm

Asymptotic Analysis

e To find the asymptotic runtime, throw away the
constants and low-order terms

— Linear search is
T= (n)=3n+3e0(n)

S
— Binary search is

Toors (M) =7 log, n |+9 € O(log n)

Remember: the ‘‘fastest” algorithm has the
slowest growing function for its runtime

10

Asymptotic Analysis

Eliminate low order terms
—4n+5=
— 05nlogn+2n+7=
- n3+32"+8n=

Eliminate coefficients

— 4n =
— 05nlogn=
- 32"=>

11

Properties of Logs

Basic:
o AlogAB - B
* log,A=

Independent of base:
e |og(AB) =

e log(A/B) =
* log(A®) =

o log((AB)") =

12

Properties of Logs

Changing base — multiply by constant
— For example: log,x =3.22 log, x

— More generally

log, n= 1 log, n
A llog, A) T°

— Means we can ignore the base for asymptotic analysis
(since we’re ignoring constant multipliers)

13

e Eliminate
low-order
terms

e Eliminate
constant
coefficients

Another example

16n3logg(10n2) + 100n?

14

Comparing functions

e f(n)is an upper bound for h(n)
if h(n) < f(n) for all n

This is too strict — we mostly care about large n

Still too strict if we want to ignore scale factors

15

Definition of Order Notation

e h(n) e O(f(n)) Big-O “Order”
if there exist positive constants c and n,
such that h(n) < cf(n) foralln>n,

O(f(n)) defines a class (set) of functions

16

Order Notatlon Intumon

12000

10000

gO00

a(n) = n3 + 2n? 5000
b(n) =100n% + 1000

2000

! 3 + En 2 —

100072 + 1000 ——

0

7 g 9

Although not yet apparent, as n gets “sufficiently large”, a(n)

will be “greater than or equal to” b(n)

17

10

Order Notation: Example

Se+06

ge+06

Te+06

Be+06

Se+06

4e+06

Je+06

2e+06

1le+06

0

"n"3 4+ 2Rt ———
100072 + 1000 ——

| 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200

100n?% + 1000 < (n3+ 2n?) foralln> 100
So 100n? + 1000 € O(n3 + 2n?) 15

Example

h(n) € O(f(n)) iff there exist positive constants c and n,
such that:
h(n) < c f(n) foralln=n,

Example:
100n? + 1000 <1 (n3+ 2n?%) foralln>100

So 100n? + 1000 € O(n3 + 2n?)

19

Constants are not unique

h(n) € O(f(n)) iff there exist positive constants c and n,
such that:

h(n) < c f(n) foralln=n,

Example:
100n? + 1000 <1 (n3+ 2n?) foralln>100

100n? + 1000 <£1/2 (n3+ 2n?) foralln > 198

20

Another Example: Binary Search

h(n) € O(f(n)) iff there exist positive constants c and n,
such that:
h(n) < c f(n) foralln=n,

Is 7log,n +9 € O (log,n)?

21

Order Notation:
Worst Case Binary Search

22

Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

h(n) = O(f(n))

or

h(n)is O(f(n))

These are equivalent to

h(n) € O(f(n))

23

Big-O: Common Names

constant:

logarithmic:

linear:
log-linear:
qguadratic:
cubic:
polynomial:

exponential:

O(1)

O(log n) (log,n, log n? € O(log n))
O(n)

O(n log n)

O(n?)

O(n3)

O(nk) (k is a constant)

O(c") (cis a constant > 1)

24

Asymptotic Lower Bounds

O g(n))isthe set of all functions asymptotically greater
than or equal to g(n)

e h(n) € Q(g(n))iff
There exist ¢c>0 and n,>0 such that h(n) = c g(n) for all n >
Ng

25

Asymptotic Tight Bound

° O(f(n))isthe set of all functions asymptotically equal to f
(n)

e h(n) € O(f(n))iff
h(n) € O(f(n)) and h(n) € Q(f(n))

- This is equivalent to:

limh(n)/ f(n)=c=0

26

Full Set of Asymptotic Bounds

* O(f(n))is the set of all functions asymptotically less than
or equal to f(n)

— 0(f(n)) is the set of all functions asymptotically strictly
less than f(n)

* Of(g(n))isthe set of all functions asymptotically greater
than or equal to g(n)

— o(g(n)) is the set of all functions asymptotically
strictly greater than g(n)

° O(f(n))isthe set of all functions asymptotically equal to f
(n)

27

Formal Definitions

h(n) € O(f(n)) iff

There exist ¢>0 and n,>0 such that h(n) < c f(n) foralln>n,

h(n) € ol(f(n)) iff

There exists an n,>0 such that h(n) < ¢ f(n) for all c>0 and n>n,
— This is equivalent to: limh(n)/f(n)=0

h(n) € Q(g(n)) iff

There exist ¢>0 and n,>0 such that h(n) = c g(n) for all n > n,

h(n) € o(g(n)) iff

There exists an n,>0 such that h(n) > c g(n) for all c>0 and n > n,
— This is equivalent to: limh(n)/ g(n)=o0
n—o0

h(n) € O(f(n)) iff
h(n) € O(f(n)) and h(n) € Q(f(n))

— This is equivalent to: limh(n)/ f(n)=c#0

28

Big-Omega et al. Intuitively

Asymptotic Notation

Mathematics

Relation
O <
Q >
0 —
0 <
® >

29

Complexity cases (revisited)

Problem size N

— Worst-case complexity: max # steps algorithm takes
on “most challenging” input of size N

— Best-case complexity: min # steps algorithm takes on
“easiest” input of size N

— Average-case complexity: avg # steps algorithm takes
on random inputs of size N

— Amortized complexity: max total # steps algorithm
takes on M “most challenging” consecutive inputs of
size N, divided by M (i.e., divide the max total by M).

30

Bounds vs. Cases

Two orthogonal axes:

— Bound Flavor
e Upper bound (O, o)
e Lower bound (Q2, ®)
e Asymptotically tight (0)

— Analysis Case
e Worst Case (Adversary), T, ()
* Average Case, T, .(n)
e Best Case, T,..(n)

e Amortized, T, ,(n)

One can estimate the bounds for any given case.

31

