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Announcements 
• Homework requires you get the textbook (Either 2nd or 

3rd Edition) 

• Section Thursday 

• Homework #1 out today (Wednesday) 
– Due at the beginning of class next Wednesday(Apr 6). 

• Program Assignment #1 is available 
– Get environment set up and compile the program by Thursday 

• Office hours: 
– Richard Anderson,  MW, 3:30-4:30 

– Andrew Li, TuF, 3:30-4:30 

– Hunter Zahn  



First Example: Queue ADT 

• FIFO: First In First Out 

• Queue operations 
create 

destroy 

enqueue 

dequeue 

is_empty 
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Queues in practice 

• Print jobs 

• File serving 

• Phone calls and operators 

 

(Later, we will consider “priority queues.”) 
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Array Queue Data Structure 

enqueue(Object x) { 

Q[back] = x  

back = (back + 1) 

} 
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b c d e f Q 

0 size - 1 

back 

dequeue() { 

x = Q[0] 

shiftLeftOne() 

back = (back – 1) 

return x  

} 

What’s missing in these 

functions? 

 

How to find K-th element 

in the queue? 

 



Circular Array Queue Data Structure 

enqueue(Object x) { 

  assert(!is_full()) 

Q[back] = x  

back = (back + 1) % Q.size 

} 
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b c d e f Q 

0 size - 1 

front back 

dequeue() { 

assert(!is_empty()) 

x = Q[front]  

front = (front + 1) % Q.size 

return x  

} 

How test for empty/full list? 

 

How to find K-th element in 

the queue? 

 

What to do when full? 

 



Linked List Queue Data Structure 
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b c d e f 

front back 

void enqueue(Object x) { 

 if (is_empty()) 

  front = back = new Node(x) 

 else { 

  back->next = new Node(x) 

  back = back->next 

  } 

} 

bool is_empty() { 

 return front == null 

} 

 

Object dequeue() { 

 assert(!is_empty()) 

 return_data = front->data 

 temp = front 

 front = front->next 

 delete temp 

 return return_data  

} 



Circular Array vs. Linked List 
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• Advantages of circular array? 

 

 

 

• Advantages of linked list? 



Second Example: Stack ADT 

• LIFO: Last In First Out 

• Stack operations 
– create 

– destroy 

– push 

– pop 

– top 

– is_empty 
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Stacks in Practice 

• Function call stack 

• Removing recursion 

• Balancing symbols (parentheses) 

• Evaluating postfix or “reverse Polish” notation 
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Algorithm Analysis 

• Correctness: 

– Does the algorithm do what is intended. 

 

• Performance: 

– Speed  time complexity 

– Memory  space complexity 

 

• Why analyze? 

– To make good design decisions 

– Enable you to look at an algorithm (or code) and identify 
the bottlenecks, etc. 
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How to measure performance? 

 



14 

We will focus on analyzing time complexity.  
First, we have some “rules” to help measure 
how long it takes to do things: 

 

 

 

 

 

 

 

Second, we will be interested in Worse 
performance (average and best case 
sometimes). 
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Analyzing Performance 

Basic operations 

Consecutive statements 

Conditionals 

Loops 

Function calls 

Recursive functions 

Constant time 

Sum of times 

Test, plus larger branch cost 

Sum of iterations 

Cost of function body 

Solve recurrence relation… 
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Complexity cases 

We’ll start by focusing on two cases. 

 

Problem size N 

– Worst-case complexity: max # steps algorithm takes 
on “most challenging” input of size N 
 

– Best-case complexity: min # steps algorithm takes on 
“easiest” input of size N 
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Exercise - Searching 

 

bool ArrayContains(int array[], int n, int key){ 

 // Insert your algorithm here 

 

 

 

 

 

 

} 

2 3 5 16 37 50 73 75 

What algorithm would you choose 

to implement this code snippet? 
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Linear Search Analysis 

bool LinearArrayContains(int array[], int n, int key ) { 

 for( int i = 0; i < n; i++ ) {  

  if( array[i] == key ) 

      // Found it! 

      return true; 

 } 

 return false; 

} 

 

 

Best Case: 

  

 

Worst Case: 
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Binary Search Analysis 

bool BinArrayContains( int array[], int low, int high, int key ) { 

 // The subarray is empty 
 if( low > high ) return false; 

 

 // Search this subarray recursively 
 int mid = (high + low) / 2; 

 if( key == array[mid] ) { 

     return true; 

 } else if( key < array[mid] ) { 

     return BinArrayFind( array, low, mid-1, key ); 

 } else { 

     return BinArrayFind( array, mid+1, high, key ); 

} 

 

 

Best case: 

  

 

Worst case: 

  

2 3 5 16 37 50 73 75 
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Solving Recurrence Relations 

1. Determine the recurrence relation and base case(s). 

 

 
2. “Expand” the original relation to find an equivalent expression in terms of 

the number of expansions (k). 

 

 

 

 
 

3. Find a closed-form expression by setting k to a value which reduces the 
problem to a base case 
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Linear Search vs Binary Search 

Linear Search Binary Search 

Best Case 4 5 at [middle] 

Worst Case 3n+3 7 log n + 9 
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Linear search—empirical analysis 

N (= array size) 

time 

(# ops) 

Each search produces a dot in above graph. 

Blue = less frequently occurring, Red = more frequent 
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Binary search—empirical analysis 

N (= array size) 

time 

(# ops) 

Each search produces a dot in above graph. 

Blue = less frequently occurring, Red = more frequent 
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Empirical comparison 

N (= array size) 

time 

(# ops) 

N (= array size) 

Linear search Binary search 

Gives additional information 
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Asymptotic Analysis 

• Consider only the order of the running time 
 
– A valuable tool when the input gets “large” 

 

– Ignores the effects of different machines or different 
implementations of same algorithm 
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Asymptotic Analysis 

• To find the asymptotic runtime, throw away the 
constants and low-order terms 

 
– Linear search is 

 

– Binary search is 

Remember: the “fastest” algorithm has the 

slowest growing function for its runtime 

)(33)( nOnnT LS

worst 

  )(log9log7)( 2 nOnnT BS

worst 
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Asymptotic Analysis 

Eliminate low order terms 

– 4n + 5  

– 0.5 n log n + 2n + 7  

– n3 + 3 2n + 8n   

 

Eliminate coefficients 
– 4n  

– 0.5 n log n  

– 3 2n => 
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Properties of Logs 
Basic: 

• AlogAB = B 

• logAA = 

  

Independent of base: 

• log(AB) = 

 

• log(A/B) = 

 

• log(AB) = 

 

• log((AB)C) = 

 



Changing base   multiply by constant 

– For example:  log2x = 3.22 log10x  

 

– More generally 

 

 

 

– Means we can ignore the base for asymptotic analysis  
(since we’re ignoring constant multipliers) 
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Properties of Logs 

n
A

n B

B

A log
log

1
log 









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Another example 

• Eliminate  
low-order  
terms 

 

• Eliminate  
constant  
coefficients 

16n3log8(10n2) + 100n2 
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Comparing functions 

• f(n) is an upper bound for h(n) 

   if h(n) ≤ f(n) for all n 

 

 

This is too strict – we mostly care about large n 

 

 

Still too strict if we want to ignore scale factors 
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Definition of Order Notation 

• h(n) є O(f(n))              Big-O  “Order” 

   if there exist positive constants c and n0 

   such that h(n) ≤ c f(n) for all n ≥ n0 

  

 

O(f(n)) defines a class (set) of functions 
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Order Notation: Intuition 

Although not yet apparent, as n gets “sufficiently large”, a(n) 
will be “greater than or equal to” b(n)  

a(n) = n3 + 2n2 

b(n) = 100n2 + 1000 
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Order Notation: Example 

100n2 + 1000    (n3 + 2n2) for all n  100 

So 100n2 + 1000  O(n3 + 2n2) 
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Example 

h(n)  O( f(n) )     iff there exist positive constants c and n0 
such that:  
h(n)   c f(n) for all n  n0 

 

Example: 

100n2 + 1000   1 (n3 + 2n2) for all n  100 
 
  So 100n2 + 1000  O(n3 + 2n2 ) 
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Constants are not unique 

h(n)  O( f(n) )     iff there exist positive constants c and n0 
such that:  
h(n)   c f(n) for all n  n0 

 

Example: 

100n2 + 1000   1 (n3 + 2n2) for all n  100 

 

100n2 + 1000   1/2 (n3 + 2n2) for all n  198 
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Another Example:  Binary Search 

h(n)  O( f(n) )     iff there exist positive constants c and n0 
such that:  
h(n)   c f(n) for all n  n0 

 

Is 7log2n + 9  O (log2n)? 

 

 
 
   

 



37 

Order Notation: 
Worst Case Binary Search 
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Some Notes on Notation 
Sometimes you’ll see (e.g., in Weiss) 

    

h(n) = O( f(n) ) 

 

or 

 

h(n) is O( f(n) ) 

 

These are equivalent to 

    

h(n)  O( f(n) ) 
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Big-O: Common Names 

– constant:  O(1) 

– logarithmic: O(log n) (logkn, log n2  O(log n)) 

– linear:  O(n) 

– log-linear:  O(n log n) 

– quadratic:  O(n2) 

– cubic:  O(n3) 

– polynomial: O(nk)  (k is a constant) 

– exponential: O(cn)  (c is a constant > 1) 
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Asymptotic Lower Bounds 

• ( g(n) ) is the set of all functions asymptotically greater 
than or equal to g(n) 

 

• h(n)  ( g(n) ) iff 
There exist c>0 and n0>0 such that h(n)  c g(n) for all n  
n0 
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Asymptotic Tight Bound 

• ( f(n) ) is the set of all functions asymptotically equal to f 
(n) 

 
• h(n)  ( f(n) ) iff 
    h(n)  O( f(n) ) and h(n)  (f(n) ) 
 - This is equivalent to: 

 lim ( )/ ( ) 0
n

h n f n c


 
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Full Set of Asymptotic Bounds 

• O( f(n) ) is the set of all functions asymptotically less than 
or equal to f(n) 

– o(f(n) ) is the set of all functions asymptotically strictly 
less than f(n) 

 

• ( g(n) ) is the set of all functions asymptotically greater 
than or equal to g(n) 

– ( g(n) ) is the set of all functions asymptotically 
strictly greater than g(n) 

 

• ( f(n) ) is the set of all functions asymptotically equal to f 
(n) 
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• h(n)  O( f(n) ) iff  
There exist c>0 and n0>0 such that h(n)   c f(n) for all n  n0 

 
• h(n)  o(f(n)) iff  

There exists an n0>0 such that h(n) <  c f(n) for all c>0 and   n  n0  
– This is equivalent to: 

 

• h(n)  ( g(n) ) iff 
There exist c>0 and n0>0 such that h(n)  c g(n) for all n  n0 

 
• h(n)  ( g(n) ) iff 

There exists an n0>0 such that h(n) > c g(n) for all c>0 and n  n0  
– This is equivalent to: 

 

• h(n)  ( f(n) ) iff 
h(n)  O( f(n) ) and h(n)  (f(n) ) 

– This is equivalent to: 

 

Formal Definitions 

lim ( )/ ( ) 0
n

h n f n




lim ( )/ ( )
n

h n g n




lim ( )/ ( ) 0
n

h n f n c


 
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Big-Omega et al. Intuitively 

Asymptotic Notation Mathematics 
Relation 

O  

  

 = 

o < 

 > 
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Complexity cases (revisited) 

Problem size N 
– Worst-case complexity: max # steps algorithm takes 

on “most challenging” input of size N 

– Best-case complexity: min # steps algorithm takes on 
“easiest” input of size N 

 

– Average-case complexity: avg # steps algorithm takes 
on random inputs of size N 

– Amortized complexity: max total # steps algorithm 
takes on M “most challenging” consecutive inputs of 
size N, divided by M (i.e., divide the max total by M). 
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Bounds vs. Cases 
Two orthogonal axes: 

 

– Bound Flavor 

• Upper bound (O, o) 

• Lower bound (, ) 

• Asymptotically tight () 

 

– Analysis Case 

• Worst Case (Adversary), Tworst(n) 

• Average Case, Tavg(n) 

• Best Case, Tbest(n) 

• Amortized, Tamort(n) 

 

One can estimate the bounds for any given case. 


