
CSE 332: Abstractions

Stacks and Queues
Spring 2016

Richard Anderson

Lecture 2

2

Announcements
• Homework requires you get the textbook (Either 2nd or

3rd Edition)

• Section Thursday

• Homework #1 out today (Wednesday)
– Due at the beginning of class next Wednesday(Apr 6).

• Program Assignment #1 is available
– Get environment set up and compile the program by Thursday

• Office hours:
– Richard Anderson, MW, 3:30-4:30

– Andrew Li, TuF, 3:30-4:30

– Hunter Zahn

First Example: Queue ADT

• FIFO: First In First Out

• Queue operations
create

destroy

enqueue

dequeue

is_empty

3

F E D C B enqueue dequeue
G A

Queues in practice

• Print jobs

• File serving

• Phone calls and operators

(Later, we will consider “priority queues.”)

4

Array Queue Data Structure

enqueue(Object x) {

Q[back] = x

back = (back + 1)

}

5

b c d e f Q

0 size - 1

back

dequeue() {

x = Q[0]

shiftLeftOne()

back = (back – 1)

return x

}

What’s missing in these

functions?

How to find K-th element

in the queue?

Circular Array Queue Data Structure

enqueue(Object x) {

 assert(!is_full())

Q[back] = x

back = (back + 1) % Q.size

}

6

b c d e f Q

0 size - 1

front back

dequeue() {

assert(!is_empty())

x = Q[front]

front = (front + 1) % Q.size

return x

}

How test for empty/full list?

How to find K-th element in

the queue?

What to do when full?

Linked List Queue Data Structure

7

b c d e f

front back

void enqueue(Object x) {

 if (is_empty())

 front = back = new Node(x)

 else {

 back->next = new Node(x)

 back = back->next

 }

}

bool is_empty() {

 return front == null

}

Object dequeue() {

 assert(!is_empty())

 return_data = front->data

 temp = front

 front = front->next

 delete temp

 return return_data

}

Circular Array vs. Linked List

8

• Advantages of circular array?

• Advantages of linked list?

Second Example: Stack ADT

• LIFO: Last In First Out

• Stack operations
– create

– destroy

– push

– pop

– top

– is_empty

9

A

B
C
D
E
F

E D C B A

F

Stacks in Practice

• Function call stack

• Removing recursion

• Balancing symbols (parentheses)

• Evaluating postfix or “reverse Polish” notation

10

CSE 332: Data Abstractions
Asymptotic Analysis

Richard Anderson, Spring 2016

12

Algorithm Analysis

• Correctness:

– Does the algorithm do what is intended.

• Performance:

– Speed time complexity

– Memory space complexity

• Why analyze?

– To make good design decisions

– Enable you to look at an algorithm (or code) and identify
the bottlenecks, etc.

13

How to measure performance?

14

We will focus on analyzing time complexity.
First, we have some “rules” to help measure
how long it takes to do things:

Second, we will be interested in Worse
performance (average and best case
sometimes).

14

Analyzing Performance

Basic operations

Consecutive statements

Conditionals

Loops

Function calls

Recursive functions

Constant time

Sum of times

Test, plus larger branch cost

Sum of iterations

Cost of function body

Solve recurrence relation…

15

Complexity cases

We’ll start by focusing on two cases.

Problem size N

– Worst-case complexity: max # steps algorithm takes
on “most challenging” input of size N

– Best-case complexity: min # steps algorithm takes on
“easiest” input of size N

16

Exercise - Searching

bool ArrayContains(int array[], int n, int key){

 // Insert your algorithm here

}

2 3 5 16 37 50 73 75

What algorithm would you choose

to implement this code snippet?

17

Linear Search Analysis

bool LinearArrayContains(int array[], int n, int key) {

 for(int i = 0; i < n; i++) {

 if(array[i] == key)

 // Found it!

 return true;

 }

 return false;

}

Best Case:

Worst Case:

18

Binary Search Analysis

bool BinArrayContains(int array[], int low, int high, int key) {

 // The subarray is empty
 if(low > high) return false;

 // Search this subarray recursively
 int mid = (high + low) / 2;

 if(key == array[mid]) {

 return true;

 } else if(key < array[mid]) {

 return BinArrayFind(array, low, mid-1, key);

 } else {

 return BinArrayFind(array, mid+1, high, key);

}

Best case:

Worst case:

2 3 5 16 37 50 73 75

19

Solving Recurrence Relations

1. Determine the recurrence relation and base case(s).

2. “Expand” the original relation to find an equivalent expression in terms of

the number of expansions (k).

3. Find a closed-form expression by setting k to a value which reduces the
problem to a base case

20

Linear Search vs Binary Search

Linear Search Binary Search

Best Case 4 5 at [middle]

Worst Case 3n+3 7 log n + 9

21

Linear search—empirical analysis

N (= array size)

time

(# ops)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent

22

Binary search—empirical analysis

N (= array size)

time

(# ops)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent

23

Empirical comparison

N (= array size)

time

(# ops)

N (= array size)

Linear search Binary search

Gives additional information

24

Asymptotic Analysis

• Consider only the order of the running time

– A valuable tool when the input gets “large”

– Ignores the effects of different machines or different
implementations of same algorithm

25

Asymptotic Analysis

• To find the asymptotic runtime, throw away the
constants and low-order terms

– Linear search is

– Binary search is

Remember: the “fastest” algorithm has the

slowest growing function for its runtime

)(33)(nOnnT LS

worst 

 )(log9log7)(2 nOnnT BS

worst 

26

Asymptotic Analysis

Eliminate low order terms

– 4n + 5 

– 0.5 n log n + 2n + 7 

– n3 + 3 2n + 8n 

Eliminate coefficients
– 4n 

– 0.5 n log n 

– 3 2n =>

27

Properties of Logs
Basic:

• AlogAB = B

• logAA =

Independent of base:

• log(AB) =

• log(A/B) =

• log(AB) =

• log((AB)C) =

Changing base  multiply by constant

– For example: log2x = 3.22 log10x

– More generally

– Means we can ignore the base for asymptotic analysis
(since we’re ignoring constant multipliers)

28

Properties of Logs

n
A

n B

B

A log
log

1
log 










29

Another example

• Eliminate
low-order
terms

• Eliminate
constant
coefficients

16n3log8(10n2) + 100n2

30

Comparing functions

• f(n) is an upper bound for h(n)

 if h(n) ≤ f(n) for all n

This is too strict – we mostly care about large n

Still too strict if we want to ignore scale factors

31

Definition of Order Notation

• h(n) є O(f(n)) Big-O “Order”

 if there exist positive constants c and n0

 such that h(n) ≤ c f(n) for all n ≥ n0

O(f(n)) defines a class (set) of functions

32

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently large”, a(n)
will be “greater than or equal to” b(n)

a(n) = n3 + 2n2

b(n) = 100n2 + 1000

33

Order Notation: Example

100n2 + 1000  (n3 + 2n2) for all n  100

So 100n2 + 1000  O(n3 + 2n2)

34

Example

h(n)  O(f(n)) iff there exist positive constants c and n0
such that:
h(n)  c f(n) for all n  n0

Example:

100n2 + 1000  1 (n3 + 2n2) for all n  100

 So 100n2 + 1000  O(n3 + 2n2)

35

Constants are not unique

h(n)  O(f(n)) iff there exist positive constants c and n0
such that:
h(n)  c f(n) for all n  n0

Example:

100n2 + 1000  1 (n3 + 2n2) for all n  100

100n2 + 1000  1/2 (n3 + 2n2) for all n  198

36

Another Example: Binary Search

h(n)  O(f(n)) iff there exist positive constants c and n0
such that:
h(n)  c f(n) for all n  n0

Is 7log2n + 9  O (log2n)?

37

Order Notation:
Worst Case Binary Search

38

Some Notes on Notation
Sometimes you’ll see (e.g., in Weiss)

h(n) = O(f(n))

or

h(n) is O(f(n))

These are equivalent to

h(n)  O(f(n))

39

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n) (logkn, log n2  O(log n))

– linear: O(n)

– log-linear: O(n log n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

40

Asymptotic Lower Bounds

• (g(n)) is the set of all functions asymptotically greater
than or equal to g(n)

• h(n)  (g(n)) iff
There exist c>0 and n0>0 such that h(n)  c g(n) for all n 
n0

41

Asymptotic Tight Bound

• (f(n)) is the set of all functions asymptotically equal to f
(n)

• h(n)  (f(n)) iff
 h(n)  O(f(n)) and h(n)  (f(n))
 - This is equivalent to:

 lim ()/ () 0
n

h n f n c


 

42

Full Set of Asymptotic Bounds

• O(f(n)) is the set of all functions asymptotically less than
or equal to f(n)

– o(f(n)) is the set of all functions asymptotically strictly
less than f(n)

• (g(n)) is the set of all functions asymptotically greater
than or equal to g(n)

– (g(n)) is the set of all functions asymptotically
strictly greater than g(n)

• (f(n)) is the set of all functions asymptotically equal to f
(n)

43

• h(n)  O(f(n)) iff
There exist c>0 and n0>0 such that h(n)  c f(n) for all n  n0

• h(n)  o(f(n)) iff

There exists an n0>0 such that h(n) < c f(n) for all c>0 and n  n0
– This is equivalent to:

• h(n)  (g(n)) iff
There exist c>0 and n0>0 such that h(n)  c g(n) for all n  n0

• h(n)  (g(n)) iff

There exists an n0>0 such that h(n) > c g(n) for all c>0 and n  n0
– This is equivalent to:

• h(n)  (f(n)) iff
h(n)  O(f(n)) and h(n)  (f(n))

– This is equivalent to:

Formal Definitions

lim ()/ () 0
n

h n f n




lim ()/ ()
n

h n g n




lim ()/ () 0
n

h n f n c


 

44

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics
Relation

O 

 

 =

o <

 >

45

Complexity cases (revisited)

Problem size N
– Worst-case complexity: max # steps algorithm takes

on “most challenging” input of size N

– Best-case complexity: min # steps algorithm takes on
“easiest” input of size N

– Average-case complexity: avg # steps algorithm takes
on random inputs of size N

– Amortized complexity: max total # steps algorithm
takes on M “most challenging” consecutive inputs of
size N, divided by M (i.e., divide the max total by M).

46

Bounds vs. Cases
Two orthogonal axes:

– Bound Flavor

• Upper bound (O, o)

• Lower bound (, )

• Asymptotically tight ()

– Analysis Case

• Worst Case (Adversary), Tworst(n)

• Average Case, Tavg(n)

• Best Case, Tbest(n)

• Amortized, Tamort(n)

One can estimate the bounds for any given case.

