CSE 332: Abstractions

Stacks and Queues

Spring 2016
Richard Anderson
Lecture 2

Announcements

- Homework requires you get the textbook (Either 2 ${ }^{\text {nd }}$ or $3^{\text {rd }}$ Edition)
- Section Thursday
- Homework \#1 out today (Wednesday)
- Due at the beginning of class next Wednesday(Apr 6).
- Program Assignment \#1 is available
- Get environment set up and compile the program by Thursday
- Office hours:
- Richard Anderson, MW, 3:30-4:30
- Andrew Li, TuF, 3:30-4:30
- Hunter Zahn

First Example: Queue ADT

- FIFO: First In First Out
- Queue operations
create destroy enqueue dequeue

is_empty

Queues in practice

- Print jobs
- File serving
- Phone calls and operators
(Later, we will consider "priority queues.")

Array Queue Data Structure

back
enqueue (Object x) \{
Q[back] = x
back = (back + 1)
\}
dequeue() \{
$\mathbf{x}=\mathrm{Q}[0]$
shiftLeftone()
back = (back - 1)
return x
What's missing in these functions?

How to find K-th element in the queue?

Circular Array Queue Data Structure

assert(!is_full())
Q[back] = x
back = (back + 1) \% Q.size
\}
dequeue () \{
assert(!is_empty())
$\mathbf{x}=\mathrm{Q}$ [front]
front $=($ front +1$) \%$ Q.size
return \mathbf{x}

Linked List Queue Data Structure

void enqueue (Object x) \{
if (is_empty())
front $=$ back $=$ new Node (x)
else \{
back->next $=$ new Node (x)
back = back->next
\}
\}
bool is_empty() \{
return front $==$ null

Circular Array vs. Linked List

- Advantages of circular array?
- Advantages of linked list?

Second Example: Stack ADT

- LIFO: Last In First Out
- Stack operations
- create
- destroy
- push
- pop
- top
- is_empty

Stacks in Practice

- Function call stack
- Removing recursion
- Balancing symbols (parentheses)
- Evaluating postfix or "reverse Polish" notation

CSE 332: Data Abstractions Asymptotic Analysis

Richard Anderson, Spring 2016

Algorithm Analysis

- Correctness:
- Does the algorithm do what is intended.
- Performance:
- Speed time complexity
- Memory space complexity
- Why analyze?
- To make good design decisions
- Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

How to measure performance?

Analyzing Performance

We will focus on analyzing time complexity. First, we have some "rules" to help measure how long it takes to do things:

Basic operations Constant time
Consecutive statements Sum of times
Conditionals Test, plus larger branch cost
Loops Sum of iterations
Function calls Cost of function body Recursive functions Solve recurrence relation...

Second, we will be interested in Worse performance (average and best case sometimes).

Complexity cases

We'll start by focusing on two cases.

Problem size \mathbf{N}

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size \mathbf{N}

Exercise - Searching

2	3	5	16	37	50	73	75

bool ArrayContains(int array[], int n, int key) \{ // Insert your algorithm here

Linear Search Analysis

```
bool LinearArrayContains(int array[], int n, int key ) {
    for( int i = 0; i < n; i++ ) {
    if( array[i] == key )
                // Found it!
            return true;
    }
    return false;
}
```


Best Case:

Worst Case:

Binary Search Analysis

2	3	5	16	37	50	73	75

```
bool BinArrayContains( int array[], int low, int high, int key ) {
    // The subarray is empty
    if( low > high ) return false;
    // Search this subarray recursively
    int mid = (high + low) / 2;
    if( key == array[mid] ) {
        return true;
    } else if( key < array[mid] ) {
        return BinArrayFind( array, low, mid-1, key );
    } else {
        return BinArrayFind( array, mid+1, high, key );
```


Best case:

Worst case:

Solving Recurrence Relations

1. Determine the recurrence relation and base case(s).
2. "Expand" the original relation to find an equivalent expression in terms of the number of expansions (k).
3. Find a closed-form expression by setting k to a value which reduces the problem to a base case

Linear Search vs Binary Search

	Linear Search	Binary Search
Best Case	4	5 at [middle]
Worst Case	$3 n+3$	$7\lfloor\log n\rfloor+9$

Linear search-empirical analysis

Each search produces a dot in above graph.
Blue = less frequently occurring, Red = more frequent

Binary search-empirical analysis

Each search produces a dot in above graph.
Blue = less frequently occurring, Red = more frequent

Empirical comparison

Gives additional information

Asymptotic Analysis

- Consider only the order of the running time
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of same algorithm

Asymptotic Analysis

- To find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is

$$
T_{w o r s t}^{L S}(n)=3 n+3 \in O(n)
$$

- Binary search is

$$
T_{w o r s t}^{B S}(n)=7\left\lfloor\log _{2} n\right\rfloor+9 \in O(\log n)
$$

> Remember: the "fastest" algorithm has the slowest growing function for its runtime

Asymptotic Analysis

Eliminate low order terms
$-4 n+5 \Rightarrow$
$-0.5 \mathrm{n} \log \mathrm{n}+2 \mathrm{n}+7 \Rightarrow$
$-n^{3}+32^{n}+8 n \Rightarrow$

Eliminate coefficients
$-4 n \Rightarrow$
$-0.5 n \log n \Rightarrow$
$-32^{n}=>$

Properties of Logs

Basic:

- $A^{\log _{A} B}=B$
- $\log _{A} A=$

Independent of base:

- $\log (\mathrm{AB})=$
- $\log (\mathrm{A} / \mathrm{B})=$
- $\log \left(\mathrm{A}^{\mathrm{B}}\right)=$
- $\log \left(\left(A^{B}\right)^{C}\right)=$

Properties of Logs

Changing base \rightarrow multiply by constant

- For example: $\log _{2} x=3.22 \log _{10} x$
- More generally

$$
\log _{A} n=\left(\frac{1}{\log _{B} A}\right) \log _{B} n
$$

- Means we can ignore the base for asymptotic analysis (since we're ignoring constant multipliers)

Another example

- Eliminate low-order

$$
16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}
$$ terms

- Eliminate constant coefficients

Comparing functions

- $f(n)$ is an upper bound for $h(n)$ if $h(n) \leq f(n)$ for all n

This is too strict - we mostly care about large n

Still too strict if we want to ignore scale factors

Definition of Order Notation

- $h(n) \in O(f(n))$ Big-O "Order" if there exist positive constants c and n_{0} such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$
$\mathrm{O}(\mathrm{f}(\mathrm{n}))$ defines a class (set) of functions

Order Notation: Intuition

$$
\begin{aligned}
& a(n)=n^{3}+2 n^{2} \\
& b(n)=100 n^{2}+1000
\end{aligned}
$$

Although not yet apparent, as n gets "sufficiently large", $a(n)$ will be "greater than or equal to" $b(n)$

Order Notation: Example

So $100 n^{2}+1000 \in \mathrm{O}\left(n^{3}+2 n^{2}\right)$

Example

$h(n) \in O(f(n)) \quad$ iff there exist positive constants c and n_{0} such that:

$$
h(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

Example:
$100 n^{2}+1000 \leq 1\left(n^{3}+2 n^{2}\right)$ for all $n \geq 100$
So $100 n^{2}+1000 \in \mathrm{O}\left(n^{3}+2 n^{2}\right)$

Constants are not unique

$h(n) \in O(f(n)) \quad$ iff there exist positive constants c and n_{0} such that:

$$
h(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

Example:
$100 n^{2}+1000 \leq 1\left(n^{3}+2 n^{2}\right)$ for all $n \geq 100$
$100 n^{2}+1000 \leq 1 / 2\left(n^{3}+2 n^{2}\right)$ for all $n \geq 198$

Another Example: Binary Search

$h(n) \in \mathrm{O}(f(n)) \quad$ iff there exist positive constants c and n_{0} such that:
$h(n) \leq c f(n)$ for all $n \geq n_{0}$

$$
\text { Is } 7 \log _{2} n+9 \in \mathrm{O}\left(\log _{2} n\right) ?
$$

Order Notation:

Worst Case Binary Search

Some Notes on Notation

Sometimes you'll see (e.g., in Weiss)

$$
h(n)=O(f(n))
$$

or

$$
h(n) \text { is } \mathrm{O}(f(n))
$$

These are equivalent to

$$
h(n) \in O(f(n))
$$

Big-O: Common Names

- constant:
- logarithmic:
- linear:
- log-linear:
- quadratic:
- cubic:
- polynomial:
- exponential:

O(1)
$O(\log n)\left(\log _{k} n, \log n^{2} \in O(\log n)\right)$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
$\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$
(k is a constant)
(c is a constant > 1)

Asymptotic Lower Bounds

- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c g(n)$ for all $n \geq$ n_{0}

Asymptotic Tight Bound

- $\theta(f(n))$ is the set of all functions asymptotically equal to f (n)
- $h(n) \in \theta(f(n))$ iff
$h(n) \in \mathrm{O}(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to:

$$
\lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0
$$

Full Set of Asymptotic Bounds

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- o(f(n)) is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to f (n)

Formal Definitions

- $h(n) \in O(f(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$

- $h(n) \in o(f(n))$ iff

There exists an $n_{0}>0$ such that $h(n)<c f(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / f(n)=0$
- $h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c g(n)$ for all $n \geq n_{0}$

- $\quad h(n) \in \omega(g(n))$ iff

There exists an $n_{0}>0$ such that $h(n)>c g(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / g(n)=\infty$
- $h(n) \in \theta(f(n))$ iff
$h(n) \in \mathrm{O}(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	\leq
Ω	\geq
θ	$=$
0	$<$
ω	$>$

Complexity cases (revisited)

Problem size \mathbf{N}

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size \mathbf{N}
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size \mathbf{N}
- Average-case complexity: avg \# steps algorithm takes on random inputs of size \mathbf{N}
- Amortized complexity: max total \# steps algorithm takes on M "most challenging" consecutive inputs of size \mathbf{N}, divided by \mathbf{M} (i.e., divide the max total by \mathbf{M}).

Bounds vs. Cases

Two orthogonal axes:

- Bound Flavor
- Upper bound (O, o)
- Lower bound (Ω, ω)
- Asymptotically tight (θ)
- Analysis Case
- Worst Case (Adversary), $T_{\text {worst }}(n)$
- Average Case, $T_{\text {avg }}(n)$
- Best Case, $T_{\text {best }}(n)$
- Amortized, $T_{\text {amort }}(n)$

One can estimate the bounds for any given case.

