
CSE 332: Data Structures

Spring 2016

Richard Anderson

Lecture 1

CSE 332 Team

• Instructors: Richard Anderson

– anderson at cs

• TAs: Hunter Zahn, Andrew Li

– hzahn93 at cs

– lia4 at cs

2

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: queues and stacks

3

Course Information
http://www.cs.washington.edu/332

Weiss, Data Structures & Algorithm Analysis in Java, 3nd
Edition, 2012.

(or buy 2nd edition—1/3 price on Amazon!)

4

Communication

Staff
– cse332-staff@cs.washington.edu

– (or our individual addresses)

Announcements
– cse332a_sp16@u

– (you are automatically subscribed @u)

5

Written homeworks

Written homeworks (8 total)

– Assigned weekly

– Due at the start of class on due date

– No late homeworks accepted

6

Projects

• Programming projects (3 total, some with phases)
– In Java

– Eclipse encouraged

– Turned in electronically

– Work on individually

– Start work early
• You have two to three weeks on the projects

• They are going to be very hard to get done in two to three
days

– Issue to watch out for: Java generics

 7

Project 1 out today

8

Overall grading

Grading

20% - Written Homework Assignments

30% - Programming Assignments

20 % - Midterm Exam (Apr 29)

30% - Final Exam (June 6, 2:30-4:20 pm)

9

Collaboration

• HWs and Projects must be done solo

– But you can discuss problems with others as
long as you follow the Gilligan’s island rule

10

Section

Meet on Thursdays

What happens there?

– Answer questions about current homework

– Previous homeworks returned and discussed

– Discuss the project (getting started, getting through it,
answering questions)

– Finer points of Java, eclipse, etc.

– Reinforce lecture material

11

Homework for Today!!

Reading in Weiss

Chapter 1 – (Review) Mathematics and Java

Chapter 2 – (Next lecture) Algorithm Analysis

Chapter 3 – (Project #1) Lists, Stacks, & Queues

12

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

13

Common tasks

• Many possible solutions

– Choice of algorithm, data structures matters

– What properties do we want?

14

Why should we care?

15

• Computers are getting faster

› No need to optimize

• Libraries: experts have done it for you

Program Abstraction

Problem defn:

Algorithm:

Implementation:

16

Data Abstraction

Abstract Data Type (ADT):

Data Structure:

Implementation:

17

Terminology

• Abstract Data Type (ADT)
– Mathematical description of an object with set of

operations on the object. Useful building block.

• Algorithm
– A high level, language-independent, description of a step-

by-step process.

• Data structure
– A specific organization of the data to accompany algorithms

for an abstract data type.

• Implementation of data structure
– A specific implementation in a specific language.

18

A starting problem: Prefix Sum

• Input: Array arr of size n

• Methods:

– arr.sum(i) – find the sum of arr[0]…arr[i]

– arr.update(i, value) – update arr[i] to value

19

Solutions

• Naïve

– arr.sum(i): Loop through and add values

– arr.update(i, value): arr[i] = value;

• Prefix array

– Compute pre[i] = arr[0] + . . . + arr[i] for all i

– arr.sum(i): return pre[i]

– arr.update(i, value): recompute prefix array

20

Examples

• Naïve:

• Prefix Array:

21

1 3 -4 6 3 5 -4 9

1 3 -4 6 3 5 -4 9

1 4 0 6 9 14 10 19

Better solution: Tree of partial sums

22

1 3 -4 6 3 5 -4 9

19

6

4

1 3

2

-4 6

13

8

3 5

5

-4 9

Sum and Update in O(log n) time

23

19

6

4

1 3

2

-4 6

13

8

3 5

5

-4 9

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: queues and stacks

24

First Example: Queue ADT

• FIFO: First In First Out

• Queue operations
create

destroy

enqueue

dequeue

is_empty

25

F E D C B enqueue dequeue
G A

Queues in practice

• Print jobs

• File serving

• Phone calls and operators

(Later, we will consider “priority queues.”)

26

Array Queue Data Structure

enqueue(Object x) {

Q[back] = x

back = (back + 1)

}

27

b c d e f Q

0 size - 1

back

dequeue() {

x = Q[0]

shiftLeftOne()

Back = (back – 1)

return x

}

What’s missing in these

functions?

How to find K-th element

in the queue?

Circular Array Queue Data Structure

enqueue(Object x) {

 assert(!is_full())

Q[back] = x

back = (back + 1)

}

28

b c d e f Q

0 size - 1

front back

dequeue() {

assert(!is_empty())

x = Q[front]

front = (front + 1)

return x

}

How test for empty/full list?

How to find K-th element in

the queue?

What to do when full?

Linked List Queue Data Structure

29

b c d e f

front back

void enqueue(Object x) {

 if (is_empty())

 front = back = new Node(x)

 else {

 back->next = new Node(x)

 back = back->next

 }

}

bool is_empty() {

 return front == null

}

Object dequeue() {

 assert(!is_empty())

 return_data = front->data

 temp = front

 front = front->next

 delete temp

 return return_data

}

Circular Array vs. Linked List

30

• Advantages of circular array?

• Advantages of linked list?

Second Example: Stack ADT

• LIFO: Last In First Out

• Stack operations
– create

– destroy

– push

– pop

– top

– is_empty

31

A

B
C
D
E
F

E D C B A

F

Stacks in Practice

• Function call stack

• Removing recursion

• Balancing symbols (parentheses)

• Evaluating postfix or “reverse Polish” notation

32

Assigned readings

Reading in Weiss

Chapter 1 – (Review) Mathematics and Java

Chapter 2 – (Next lecture) Algorithm Analysis

Chapter 3 – (Project #1) Lists, Stacks, & Queues

33

