CSE 332: Data Structures

CSE 332 Team

e |nstructors: Richard Anderson

— anderson at cs

e TAs: Hunter Zahn, Andrew Li
— hzahn93 at cs
— lia4 at cs

Today’s Outline

Introductions
Administrative Info

What is this course about?
Review: queues and stacks

Course Information
http://www.cs.washington.edu/332

Weiss, Data Structures & Algorithm Analysis in Java, 3™
Edition, 2012.

(or buy 2" edition—1/3 price on Amazon!)

[s | Data Structures and Algorithm Analysis in Java (3rd Edition)

by Mark &. Weiss

i Hardcover
J/AMA £52.85 to rent «/Prime

$132.13 1o bLI',-‘ Prime
Cnly 4 left in stock - order soon.

Maore Buying Choices
‘ $99.99 used & new (64 ofers)

Data Structures and Algorithm Analysis in Java (2nd Edition)
by Mark & Weiss

Hardcover

$3.62 used & new (49 offers)

FPaperback
$24.89 used & new (8 ofers)

See newer edition of this book 4

Communication

Staff
— cse332-staff@cs.washington.edu

— (or our individual addresses)
Announcements

— cse332a sple@u

— (you are automatically subscribed @u)

Written homeworks

Written homeworks (8 total)
— Assigned weekly
— Due at the start of class on due date
— No late homeworks accepted

Projects

* Programming projects (3 total, some with phases)
— In Java
— Eclipse encouraged
— Turned in electronically
— Work on individually

— Start work early
* You have two to three weeks on the projects

* They are going to be very hard to get done in two to three
days

— Issue to watch out for: Java generics

Project 1 out today

CSE 332: Data Abstractions Spring 2016

P1: Zip P1 Due Date: Wednesday, April 13, 11:30pm

The purposes of this project are (1) to review Java, (2) to give you a taste of what CSE 332 will be
like, (3) to implement various “WorkList"” data structures, (3) to learn a new important data structure,
and (4) to implement a real-world application.

Overview

A WorkList is a generalization of Stacks, Queues, etc. A WorkList contains items to be processed in some
order. The WorkList ADT is defined as follows:

add(work) | Notifies the worklist that it must handle work

peek() Returns the next item to work on

next () Removes and returns the next item to work an

hasWork() | Returns true if there's any work left and false otherwise

A Trie is a type of dictionary made for storing “words” (types made up of letters). If you took CSE 143, you've
actually already seen tries; you just didn't know it yet. We will describe them in full detail later, but for now,

here's an example:
R

J

L% £ R

a
3
d B b
boddo dod
¢ D 9
) O O
This trie represents the dictionary: {adam, add, app, bad, bag, bags, beds, bee, cab}, because if we

go from the root of the trie reading in letters until we hit a "true” node, we get a word. Recall that in huffman,
we had two possibilities (0 and 1) and we read from the root to a leaf.

a

In this project, you will implement several different types of WorkLists and a generic and specialized trie. Then,
you will run code that uses your data structure to compress inputs into a *zip file which can interoperate with
the standard zip programs!

Overall grading

Grading
20% - Written Homework Assignments
30% - Programming Assignments
20 % - Midterm Exam (Apr 29)
30% - Final Exam (June 6, 2:30-4:20 pm)

Collaboration

* HWs and Projects must be done solo

— But you can discuss problems with others as
long as you follow the Gilligan’s island rule

10

Section

Meet on Thursdays

What happens there?
— Answer questions about current homework
— Previous homeworks returned and discussed

— Discuss the project (getting started, getting through it,
answering questions)

— Finer points of Java, eclipse, etc.

— Reinforce lecture material

Homework for Today!!

Reading in Weiss

C
C
C

napter 1 — (Review) Mathematics and Java
hapter 2 — (Next lecture) Algorithm Analysis

napter 3 — (Project #1) Lists, Stacks, & Queues

Today’s Outline

Introductions
Administrative Info

What is this course about?
Review: Queues and stacks

Common tasks

 Many possible solutions
— Choice of algorithm, data structures matters
— What properties do we want?

Why should we care?

e Computers are getting faster

> No need to optimize

e Libraries: experts have done it for you

Program Abstraction

Problem defn:

Algorithm:

Implementation:

Data Abstraction

Abstract Data Type (ADT):

Data Structure:

Implementation:

Terminology

Abstract Data Type (ADT)

— Mathematical description of an object with set of
operations on the object. Useful building block.

Algorithm

— A high level, language-independent, description of a step-
by-step process.

Data structure

— A specific organization of the data to accompany algorithms
for an abstract data type.

Implementation of data structure
— A specific implementation in a specific language.

A starting problem: Prefix Sum

* |[nput: Array arr of size n
 Methods:

— arr.sum(i) — find the sum of arr[0]...arr|[i]
— arr.update(i, value) — update arr|i] to value

Solutions

* Nalve
— arr.sum(i): Loop through and add values
— arr.update(i, value): arr[i] = value;

* Prefix array
— Compute preli] = arr[0] + ...+ arr[i] for all i
— arr.sum(i): return preli]
— arr.update(i, value): recompute prefix array

e Nalve:

Examples

* Prefix Array:

1 5 -4 9
1 5 -4 9
1 14 10 19

21

Better solution: Tree of partial sums

1 3 -4 6 3 5 -4 9

Sum and Update in O(log n) time

Introduct

Today’s Outline

lons

Administrative Info

What is t

nis course about?

Review: @

ueues and stacks

First Example: Queue ADT

* FIFO: First In First Out

* Queue operations
create

destroy

dequeue_

G ="M=+ FEDCB

engueue
dequeue
IS_empty

Queues In practice

* Print jobs
* File serving
* Phone calls and operators

(Later, we will consider “priority queues.”)

Array Queue Data Structure

0 size -1
(Q bic|d|e|f
1
back
enqueue (Object x) { What's missing in these
Q[back] = x functions?
back = (back + 1)
}
How to find K-th element
dequeue () { in the queue?
x = Q[O0]
shiftLeftOne ()

Back = (back - 1)

return x

Circular Array Queue Data Structure

0 size-1
(g blc|d|e|f
| [
enqueue (Object x) { front back
assert(!is_full()) How test for empty/full list?

Q[back] = x
back = (back + 1)

} How to find K-th element in

Seerreme () § the queue?

assert(!is_empty())
x = Q[front] What to do when full?
front = (front + 1)

return x

Linked List Queue Data Structure

b > C > d e > f
front back
void enqueue (Object x) { Object dequeue() {

if (is_empty()) assert(!'is empty())

front = back = new Node (x) return data = front->data
else { temp = front

back->next = new Node (x) front = front->next

back = back->next delete temp
} return return data

} }
bool is empty () {
return front == null

Circular Array vs. Linked List

e Advantages of circular array?

e Advantages of linked list?

Second Example: Stack ADT

* LIFO: Last In First Out

e Stack operations
— create
— destroy A /'E DCBA
— push A /
— pop
— top
— Is_empty

M m g O

Stacks in Practice

Function call stack

Removing recursion

Balancing symbols (parentheses)

Evaluating postfix or “reverse Polish” notation

Assigned readings

Reading in Weiss

C
C
C

napter 1 — (Review) Mathematics and Java
hapter 2 — (Next lecture) Algorithm Analysis

napter 3 — (Project #1) Lists, Stacks, & Queues

