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CSE 332 Data Abstractions, Spring 2016 

Homework 6 
Due: Wednesday, May 17, 2016 at the BEGINNING of lecture. Your work should be readable as well as 

correct.   The first two problems should be submitted through GitLab, and the second two on paper. 

Problem 1:  getLeftMostIndex 
Submit your solution to this problem using Gitlab. 

Use the ForkJoin  framework to write the following method in Java: 

 
public static int getLeftMostIndex(char[] needle, char[] haystack, int 
seqCutoff) 

 

Returns the index of the left-most occurrence of needle in haystack (think of needle and haystack 

as strings) or -1 if there is no such occurrence. 

 
For example, getLeftMostIndex("cse332","Dudecse4ocse332momcse332Rox") == 9 
and getLeftMostIndex("sucks","Dudecse4ocse332momcse332Rox") == -1. 

 

Your code must actually use the seqCutoff argument. You may assume that 

needle.length is much smaller than haystack.length. A solution that solves 

overlapping subproblems will be significantly cleaner and simpler than one that does not. 

  

 

Problem 2: hasOver 
Submit the solution to this problem using Gitlab. 

Use the ForkJoin  framework to write the following method in Java: 

 
public static int[] filterEmpty(String[] arr) 

 

Returns an array with the lengths of the non-empty strings from arr (in order). 
 
For example, if arr is ["", "", "cse", "332", "", "hw", "", "7", "rox"],  then 
filterEmpty(arr) == [3, 3, 2, 1, 3]. 
 
A parallel algorithm to solve this problem in O(lg n) span and O(n) work is the following:  
  1) Do a parallel map to produce a bit set  

2) Do a parallel prefix over the bit set  

3) Do a parallel map to produce the output. 
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Problem 3: Amdahl’s Law: Graphing the Pain 
Use a graphing program such as a spreadsheet to plot the following implications of Amdahl’s Law. For 

both part a and part b, turn in 1) the graphs and 2) tables with the data.  (You may take the definition of 

Amdahl’s law from the course notes, section 4.2, page 27-28).  

(a) Consider the speed-up (T1/TP ) where P = 256 of a program with sequential portion S where the 

portion 1 − S enjoys perfect linear speed-up. Plot the speed-up as S ranges from 0.01 (1% sequential) 

to 0.25 (25% sequential). 

(b) Consider again the speed-up of a program with sequential portion S where the portion 1 − S enjoys 

perfect linear speed-up. This time, hold S constant and vary the number of processors P from 2 to 32. 

On the same graph, show four curves, one each for S = 0.01, S = 0.1, S = 0.2, and S = 0.4. 

 

 

Problem 3:  Parallel Quicksort 
Lecture presented a parallel version of quicksort with best-case O(log

2
n) span and O(n log n) work. This 

algorithm used parallelism for the two recursive sorting calls and the partition. 
 

(a) For the algorithm from lecture, what is the asymptotic worst-case span and work.  For both, state 

a recurrence and solve it – show your work solving the recurrence. 

(b) Suppose we use the parallel partition part of the algorithm, but perform the two recursive calls in 

sequence rather than parallel.  What is the asymptotic worst-case span and work? For both, state 

a recurrence and solve it – show your work solving the recurrence.  

  


