
CSE 332: Data Structures and Parallelism Autumn 2016

P2: uMessage Checkpoint 1: Due Tue, Oct 25
Checkpoint 2: Due Tue, Nov 01
P2 Due Date: Due Tue, Nov 08

The purpose of this project is to implement various data structures and algorithms described in
class. You will also implement the back-end for a chat application called “uMessage”.

Overview
One of the most important ADTs is the Dictionary and one of the most studied problems is sorting. In
this assignment, you will write multiple implementations (AVLTree, HashTable, etc.) of Dictionary and
multiple sorting algorithms.

All of these implementations will be used to drive word suggestion, spelling correction, and autocompletion
in a chat application called uMessage. These algorithms are very similar to the ones smartphones use for
these problems, and you will see that they do relatively well with a small effort. Since uMessage has
many components and is difficult to test, we will ask you to test your code by writing another client for
WordSuggestor.

We have provided the boring pieces of these programs (e.g., GUIs, printing code, etc.), but you will write
the data structures that back all of the code we’ve written.

Project Restrictions
• You must work in a group of two unless you successfully petition to work by yourself.

• You may not use any of the built-in Java data structures. One of the main learning outcomes is to
write everything yourself.

• You may not edit any file in the cse332.* packages.

• The design and architecture of your code are a substantial part of your grade.

• The Write-Up is a substantial part of your grade; do not leave it to the last minute.

• DO NOT MIX any of your experiment or above and beyond files with the normal code. Before
changing your code for experiments or above and beyond, copy the relevant into the corresponding
package (e.g., aboveandbeyond, experiments). If your code does not compile because you did not
follow these instructions, you will receive a 0 for all automated tests.

• Make sure to not duplicate fields that are in super-classes (e.g., size). This will lead to unexpected
behavior and failures of tests.

NGrams and Generating Text
An NGram is a list of n words appearing in order in a text. They are often used in textual analysis to see
how frequent patterns are. In this assignment, you will use them to generate new text that sounds like
the author of an original text. This type of text generation is how word prediction works on your phone.

There are two main backend programs that drive uMessage: WordSuggestor and SpellingCorrector.
We recommend you only attempt to run uMessage directly when you believe you no longer have any bugs.

P1 and Beyond
This project actually extends on p1 a lot! You will need to port over (i.e., put them in the same packages)
the following:

1



• datastructures.worklists: All your simple WorkLists: ArrayStack, ListFIFOQueue, Circu-
larArrayFIFOQueue

• datastructures.worklists: Your MinFourHeap (Note that it will not immediately compile, be-
cause the interfaces have changed slightly–more on that later.)

• datastructures.dictionaries: Your HashTrieSet and your HashTrieMap

After you port these files over, some of them won’t compile. You will need to modify (slightly) many
of the classes you ported over from P1. In particular, CircularArrayFIFOQueue, HashTrieMap, and
HashTrieSet all have a type parameter either called E or A. To implement compareTo, you need to insist
that this type be Comparable<A>. That is, if the type parameter is “A”, you should replace it with “A
extends Comparable<A>” in the class header. An example is with the class header of MinFourHeap.

You will also need to add a compareTo method stub. For now, you should not implement this method;
you will need to implement it correctly as part of (3).

Provided Code
Several of the interfaces and implementations from p1 also appear in p2. We will only describe the new
classes in an attempt to be less overwhelming.

• cse332.interfaces.misc
– DeletelessDictionary.java: Like a dictionary, but the delete method is unsupported.
– ComparableDictionary.java: A DeletelessDictionary that requires comparable keys.
– SimpleIterator.java: A simplification of Java’s Iterator that has no remove method.

• cse332.datastructures.*
– Item.java: A simple container for a key and a value. This is intended to be used as the object

stored in your dictionaries.
– BinarySearchTree.java: An implementation of Dictionary using a binary search tree. It

is provided as an example of how to use function objects and iterators. The iterators you write
will not be as difficult.

• cse332.*
– WordReader.java: Standardizes inputs into lower case without punctuation.
– LargeValueFirstItemComparator.java: A comparator that considers larger values as “smaller”,

and breaks ties by considering the keys.
– InsertionSort.java: A provided implementation of InsertionSort.
– AlphabeticString.java: This type is a BString that is just a wrapper for a standard String.
– NGram.java: This type is a BString that represents an n-gram.

• p2.wordcorrector
– AutocompleteTrie.java: This is the trie used by uMessage; it is backed by HashTrieMap.
– SpellingCorrector.java: This is the spelling corrector used by uMessage.

• p2.wordsuggestor
– ParseFBMessages.java: This program downloads your facebook messages. It is intended to

be used as a way of generating a personal corpus for the WordSuggestor.
– WordSuggestor.java: This is the word suggestor used by uMessage.

• p2.clients
– NGramTester.java: This class can be used to test your NGramToNextChoicesMap.

• chat
– uMessage.java: This is the main driver program for uMessage.

You will implement NGramToNextChoicesMap (in p2.wordsuggestor), MoveToFrontList, AVLTree, and
ChainingHashTable (in datastructures.dictionaries), HeapSort, QuickSort, and TopKSort (in
p2.sorts).

2



uMessage
After you have finished all the implementations, you will be ready to try out uMessage. We expect you to
actually play with the application, and the Write-Up will ask you to do several things with it. Importantly,
there are configuration settings (n and the corpus) at the top of uMessage.java which you will want to
edit. It is very likely that you will need to read the “out of memory” handout as you do this.

Project Checkpoints
This project will have two checkpoints (and a final due date). A checkpoint is a check-in on a certain
date to make sure you are making reasonable progress on the project. For each checkpoint, you (and your
partner) will sign up for a 5-minute time slot during which you will meet with Ruth or a TA and discuss
where you are on the project.

As long as you show up to a time-slot and you do not miss multiple checkpoints in a row, the checkpoint
will not affect your grade in any way.

Checkpoint 1: (1), (2), (3) Tue, Oct 25
Checkpoint 2: (4), (5), (6) Tue, Nov 01
P2 Due Date: (7), (8) Tue, Nov 08

3

http://courses.cs.washington.edu/courses/cse332/16au/handouts/heapsize.pdf


Part 1: A Dictionary Client & two new Dictionary classes
Perhaps confusingly, you will begin by writing the client data structure that will use all of your code. This
data structure is called NGramToNextChoicesMap. We have written part of it for you, but we’re asking
you to implement most of this data structure so you become familiar with the expected behavior of the
data structures you will be writing later.

One skill that you will need to pick up over your career is learning new APIs; to help you with this, we
have (without significant explanation) used a few Java 8 features. In particular, you will want to look up
the Supplier class. Although it is overkill, parts of this tutorial are helpful.

(1) NGramToNextChoicesMap
Before continuing, it is imperative that you understand what an NGram is.
The very general idea of NGramToNextChoicesMap is the following:

NGramToNextChoicesMap will map NGrams to words to counts.

Let’s walk through an example to better understand this. Suppose that the n in n-gram is 2 and the
following are the contents of our input file:

>> Not in a box.
>> Not with a fox.
>> Not in a house.
>> Not with a mouse.

The key set of the outer map will contain all of the 2-grams in the file. That is, it will be

{“box SOL”, “house SOL”, “in a”, “a fox”, “a house”, “with a”, “not with”, “fox SOL”, “a box”, “not in”, “SOL not”}

Notice several interesting things about the output: (1) all input is standardized by removing non-alphanumeric
characters converting everything to lower case, and (2) the “word” “SOL” has been added at the beginning
of every line, except the first line of the corpus. “SOL”, which stands for “start of line”, is inserted by
uMessage so that individual pieces of the corpus do not get mushed together.

The “top level” maps to another dictionary whose keys are the possible words following that n-gram. So,
for example, the keys of the dictionary that “with a” maps to are {“mouse”, “fox”}, because “mouse” and
“fox” are the only two words that follow the 2-gram “with a” in the original text.

Finally, the values of the inner dictionary are a count of how many times that word followed that n-gram.
So for example, we have:

• "not in"={a=2}, because the word “a” follows the 2-gram “not in” twice

• "with a"={mouse=1, fox=1}, because “mouse” and “fox” each only appear once after “with a”

The entire output for the sample input file above looks like:
"SOL not"={in=1, with=2}, "a box"={SOL=1}, "a fox"={SOL=1}, "a house"={SOL=1},
"box SOL"={not=1}, "fox SOL"={not=1}, "house SOL"={not=1}, "in a"={box=1, house=1},
"not in"={a=2}, "not with"={a=2}, "with a"={fox=1, mouse=1}

The order of the entries does not matter (remember, dictionaries are not ordered), but the contents do.
Part of this project is comparing and contrasting the performance of various implementations of Dictionary.
To do this, we will use different “outer” and “inner” Dictionary types in NGramToNextChoicesMap. (The
outer type is the map from NGrams to words; the inner type is the map from words to counts.) To make
this easier, NGramToNextChoicesMap takes two “initializers” in its constructor representing these types.
For example, to use outer = ChainingHashTable and inner = MoveToFrontList, we would write:

new NGramToNextChoicesMap(() -> new ChainingHashTable(), () -> new MoveToFrontList())

4

http://winterbe.com/posts/2014/03/16/java-8-tutorial/


The “() -> X” notation tells Java to make a function that takes no arguments and returns the thing on
the right. This is handy, because our NGramToNextChoicesMap needs to be able to create new inner maps
for each key in the outer map.

One more important implementation detail is that instead of using type “String” for the words, we use
type “AlphabeticString”. The reason for this should be clear: we’d like to use TrieMap if possible!

To use a HashTrieMap, we need to jump through a few extra hoops, because the constructor takes an
extra argument. We’ve provided a method for you in NGramTester called trieConstructor which does
this for you; it returns a Supplier which can be given directly to WordSuggestor.
Now that you know what NGramToNextChoicesMap is supposed to do, implement the following two
methods:

public void seenWordAfterNGram(NGram ngram, String word)

Increments the number of times that word has been seen after ngram

public Item<String, Integer>[] getCountsAfter(NGram ngram)

Returns an array of Items representing words and the number of times each word was seen after
ngram. There is no guarantee on the ordering of the array.

There is a third method relevant to word suggestion called getWordsAfter which we have partially
implemented for you, but, for now, you should not implement it.

We recommend testing your implementation by using HashTrieMap since you already have one that works.

(2) MoveToFrontList: Another Dictionary
In this part, you will implement MoveToFrontList, a new type of Dictionary.

For the remainder of the Dictionary classes you will implement, we will not ask you to write delete–it
is possible (and you can do it for extra credit), but it’s not educational enough to be part of the actual
project. As a result, your Dictionary classes will inherit from DeletelessDictionary which is the same
as Dictionary except it does not require that you implement a delete method.

MoveToFrontList is a type of linked list where new items are inserted at the front of the list, and an
existing item gets moved to the front whenever it is referenced. Although it has O(n) worst-case time
operations, it has a very good amortized analysis. We will not discuss this data structure in class.

MoveToFrontList relies on equality testing of elements. In Java, we deal with this by defining an equals
method. If you look in BString (the class that AlphabeticString and NGram both inherit from), it relies
on CircularArrayFIFOQueue having a reasonable definition of equality. Before MoveToFrontList will
work, you will need to define the equals method for CircularArrayQueue. You may not use toString
to implement equals; we expect you to build it from scratch. You might be wondering how to figure out
the type of the parameter for equals; in Java, the equals method takes an Object. You will want to to
do research on the Java instanceof operator, as it will be a part of your solution.

(3) AVLTree: Another Another Dictionary
In this part, you will implement AVLTree. We recommend waiting to do this until we have discussed it in
lecture. Just like before, you do not have to implement delete. Your AVLTree should be a sub-class of
BinarySearchTree which we have written for you. Be careful to not duplicate code. Additionally, if your
rotation code is repetitive, you will lose a substantial amount of points.

Recall that all BSTs rely on a reasonable definition of comparison. Just like you needed to define equals for

5



MoveToFrontList (because it needed equality), you will need to define compareTo in CircularArrayFIFOQueue
for BinarySearchTree and AVLTree to work (because they need comparison). compareTo on CircularArrayFifoQueue
should work similar to how comparison on strings works. However, you may not use toString to implement
compareTo; we expect you to build it from scratch.

6



Part 2: Implementing The Remaining Dictionary Classes and Sorts
(4) ChainingHashTable: Another Another Another Dictionary
In this part, you will implement ChainingHashTable. We recommend waiting to do this until we have
discussed it in lecture. Just like before, you do not have to implement delete. Your hash table must
use separate chaining–not probing. Furthermore, you must make the type of chain generic. In particular,
you should be able to use any dictionary implementation as the type inside the buckets. Your HashTable
should rehash as appropriate (use an appropriate load factor as discussed in the class), and its capacity
should always be a prime number. Your HashTable should be able to grow to at least 200,000.

Recall that all Hash Tables rely on a reasonable definition of hash code. Just like you needed to de-
fine equals and compareTo for various other data structures, you will need to define hashCode in
CircularArrayFIFOQueue for ChainingHashTable. You may not use toString to implement hashCode;
we expect you to build it from scratch.

(5) HashTrieMap: Full Circle!
Now that you have written your own hash map, replace the dependency on Java’s HashMap with your
ChainingHashTable! Warning! This part is harder than it looks. Please ask if you have questions about
Java, although the first thing we will tell you is to take a look at the SimpleEntry javadoc.

In fact, you have now written pretty much all of the data structures that you’ve used from Java’s library!
WHOA! You now understand all the magic under the hood! Take a minute to bask in the glory that is
data structures nirvana. Go for a walk, have a snack, talk to a friend, play with a cat/dog, call your mom
- choose your own form of celebration. Yay you! (and your partner)! Bravo! (Notice how confetti and
fireworks are sprouting from this document as you read this.)

(6) MinFourHeap (Again?) and The Sorts
O.k. back to work. The MinFourHeap you wrote in p1 was only able to compare elements in a single way
(based on the compareTo). There is a more general idea called a Comparator which allows the user to
specify a comparison function. The first thing you should do in this part is edit your MinFourHeap to use
a comparator. You should edit the constructor to take a Comparator<E> and the rest of your code to use
that comparator in place of compareTo. This is necessary to make the sorts (below) work.
After you’ve edited MinFourHeap, you will be ready to write the following sorting algorithms:

• HeapSort: Consists of two steps:

(1) Insert each element to be sorted into a heap (MinFourHeap)

(2) Remove each element from the heap, storing them in order in the original array.

• QuickSort: Implement quicksort. As with the other sorts, your code should be generic. Your sorting
algorithm should meet its expected runtime bound.

• TopKSort: An easy way to implement this would be to sort the input as usual and then just
print k largest of them. This approach finds the k largest items in time O(n lg n). However, your
implementation should have O(n lg k) runtime, assuming k is less than or equal to n. Efficiently
tracking the k largest will require a different comparator than what you used in HeapSort. TopKSort
should put the top k elements in the first k spots in the array, and all the other indices should
be null. In other words, if A = quicksort(B) for some array B, then: topKSort(k,A) =
[A[n− k], A[n− (k − 1)], . . . , A[n− 1], null, null, . . . , null].

Notice that you will have to modify the result returned from TopKSort when using it inside
NGramToNextChoicesMap; you should do this outside of your TopKSort code.

(Hint: Use a heap, but never put more than k elements into it. Think about why this gives O(n lg k)
runtime bound).

7

https://docs.oracle.com/javase/8/docs/api/java/util/AbstractMap.SimpleEntry.html


Part 3: The Write-Up
(7) Write-Up
A very large fraction of your grade will be based on your write-up. The analysis part of this project is
incredibly important, and we expect you to spend an entire week’s worth of work on it. Really!

Some of the write-up questions will ask you to design and run some experiments to determine which
implementations are faster for various inputs. Answering these questions will require writing additional
code to run the experiments, collecting timing information and producing result tables and graphs, together
with relatively long answers. Do not wait until the last minute!

Insert tables and graphs into your repository as appropriate, and be sure to give each one a title and
label the axes for the graphs. Place all your timing code into the package experiment. Be careful not
to leave any write-up related code in the normal files. To prevent losing points due to the modifications
made for the write-up experiments, we recommend that you copy all files that need to be modified for the
experiments into the package experiment, and start working from there. Files in different packages can
have the same name, but when editing be sure to check if you are using the correct file!

You will need to write a second hashing function. To exaggerate the difference between the two hash
functions, you will want to compare a very simple hash function with a decent one (the one used in Part
2). For all experimental results, we would like to see a detailed interpretation, especially when the results
do not match your expectations.

We will treat all proprietary formats as unreadable files. Please do not give us xls, xlsx, doc, docx, odt,
etc. Directly embedding the data in the markdown file is your best option; images for graphs are fine;
csv files are fine. It is important to realize that other people will not necessarily have the programs you
do–and, perhaps more importantly, they might be running on a machine with no GUI.

(8) uMessage - Do not wait until the last minute for this!
Now that you are done with all of the coding (and most of the write-up) for the project, you are ready to
attempt to run uMessage. As many folks saw when they ran zip on P1, this may expose problems with
code you wrote earlier. Do not wait until the last minute for this step! Before you run uMessage, you will
want to do the following:

• Make sure JavaFX is installed correctly on whatever machine you are using. On the windows machines
in the labs this will work automatically. On the Linux machines in the labs you will need to type: .
ojdk (that is a dot, followed by a space, followed by ojdk) at a command prompt before running
uMessage. If it doesn’t work on your personal machine, you will want to (1) make sure you are using
Java 8, and (2) attempt to use a lab machine if it still isn’t working.

• Increase the allowed heap size in Eclipse. In particular, uMessage runs significantly more smoothly if
you give it 6GBs of memory. To do this, read the “out of memory” handout on the course website.

• Make sure your computer is plugged in. (Yes, this will make a difference.)

• Finish the getWordsAfter method in NGramToNextChoicesMap. You should replace InsertionSort
with a faster, standard sort, and if k ≥ 0, you should run TopKSort. You might have to do some-
thing more than just run TopKSort to get the most frequent words out. Figuring out exactly what
to do here is part of the challenge.

There are several variables at the top of uMessage which you will have to edit: the corpus, the “n”, the
“inner dictionary” and the “outer dictionary”. If you leave the corpus as eggs.txt, the suggestions will be
garbage. If you leave the inner and outer dictionaries as tries, uMessage will probably be too slow.

8

http://courses.cs.washington.edu/courses/cse332/16au/handouts/heapsize.pdf


The point of uMessage is that it’s a cool application that uses all of the code you wrote. Please do not
spend a significant amount of time trying to get uMessage to work.

Above and Beyond
• Completing the ADT : Implement the delete methods for all of the Dictionary classes.

• Alternate Hashing Strategies: Implement both closed and open addressing and perform experimenta-
tion to compare performance. Also, design additional hashing functions and determine which affects
performance more: hashing cost, collision-avoidance cost, or your addressing strategy.

• Introspective Sort: Introspective sort is an unstable quicksort variant which switches to heapsort for
inputs which would result in a O(n2) running-time for normal quicksort. Thus, it has an average-case
and a worst-case runtime of O(n lg n), but generally runs faster than heapsort even in the worst
case. Implement IntrospectiveSort, and give a sample input which would result in a quadratic
runtime for normal quicksort (using a median-of-3 partitioning scheme).

• Alternate Text Generation Models: The n-gram model is relatively simple and has some major
drawbacks. You can do more interesting things instead. For example, you might use a part-of-speech
tagger to get the sentences to at least always be coherent. Research more interesting text generation
strategies, implement them, and discuss your results.

9


	NGramToNextChoicesMap
	MoveToFrontList: Another Dictionary
	AVLTree: Another Another Dictionary
	ChainingHashTable: Another Another Another Dictionary
	HashTrieMap: Full Circle!
	MinFourHeap (Again?) and The Sorts
	Write-Up
	uMessage - Do not wait until the last minute for this!

