CSE 332: Data Structures \& Parallelism Lecture 23: Disjoint Sets

Ruth Anderson

Autumn 2016

Aside: Union-Find aka Disjoint Set ADT

- Union(\mathbf{x}, \mathbf{y}) - take the union of two sets named x and y
- Given sets: $\{3, \underline{5}, 7\}$, $\{4,2, \underline{8}\},\{\underline{9}\},\{1,6\}$
- Union(5,1)

Result: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
To perform the union operation, we replace sets x and y by $(x \cup y)$

- Find(\mathbf{x}) - return the name of the set containing x.
- Given sets: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
- Find(1) returns 5
- Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case $\mathrm{O}(\log \mathrm{n})$ for an individual Find operation).

Implementing the DS ADT

- n elements,

Total Cost of: m finds, $\leq n-1$ unions

can there be more unions?

- Target complexity: $O(m+n)$
i.e. $O(1)$ amortized
- $O(1)$ worst-case for find as well as union would be great, but... Known result: both find and union cannot be done in worst-case $O(1)$ time

Data Structure for the DS ADT

- Observation: trees let us find many elements given one root...
- Idea: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...
- Idea: Use one tree for each equivalence class. The name of the class is the tree root.

Up-Tree for Disjoint Union/Find

(3)

Find Operation

Find (x) - follow x to the root and return the root

Union Operation

Union (x, y) - assuming x and y are roots, point y to x.

Simple Implementation

- Array of indices

	1	2			4	5		6	7
up	0	1		0	7	7		5	0

Up $[x]=0$ means \mathbf{x} is a root.

Implementation

```
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```
void Union(int x, int y) {
    up[y] = x;
}
```

runtime for Union():
runtime for Find():
runtime for m Finds and n-1 Unions:

A Bad Case

(1) 2 (3

Find(1) n steps!!

Now this doesn't look good ©

Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$

- Union-by-size
- Reduces complexity to $\Theta(m \log n+n)$

2. Improve find so that it becomes even better!

- Path compression
- Reduces complexity to almost $\Theta(m+n)$

Weighted Union/Union by Size

- Weighted Union
- Always point the smaller (total \# of nodes) tree to the root of the larger tree

Example Again

(1) (2) (3) n

W-Union(2,1)

W-Union(3,2)

W-Union(n,2)

Find(1) constant time

Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^{h}.

- Proof by induction
- Basis: $\mathrm{h}=0$. The up-tree has one node, $2^{0}=1$
- Inductive step: Assume true for all h ' < h.

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

$$
\begin{aligned}
n & \geq 2^{h} \\
\log _{2} n & \geq h
\end{aligned}
$$

- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

Example of Worst Cast (cont')

After n/2 + n/4 + ...+ 1 Weighted Unions:

If there are $\mathbf{n}=\mathbf{2}^{\mathrm{k}}$ nodes then the longest path from leaf to root has length k.

Array Implementation

Weighted Union

```
W-Union(i,j : index){
    //i and j are roots
    wi := weight[i];
    wj := weight[j];
    if wi < wj then
        up[i] := j;
        weight[j] := wi + wj;
    else
        up[j] :=i;
        weight[i] := wi +wj;
}
new runtime for Find():
runtime for \(m\) finds and \(n-1\) unions \(=\)
```


Nifty Storage Trick

- Use the same array representation as before
- Instead of storing -1 for the root, simply store-size
[Read section 8.4]

How about Union-by-height?

- Can still guarantee $\mathrm{O}(\log n)$ worst case depth

Left as an exercise!

- Problem: Union-by-height doesn't combine very well with the new find optimization technique we'll see next

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Student Activity

Draw the result of Find(e):

Self-Adjustment Works

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] f -1 do //find root//
        r := up[r];
    if i f r then //compress path//
        k := up[i];
        while k f= r do
            up[i] := r;
            i := k;
            k := up[k]
    return(r)
}
```


Path Compression: Code

int Find (Object x) \{
// x had better be in
// the set!
int xID = hTable[x];
int $i=x I D ;$
// Get the root for
// this set
while(up [xID] != -1)
\{

$$
\text { xID }=u p[x I D] ;
$$

\}
// Change the parent for
// all nodes along the path
while(up[i] != -1) \{
temp = up[i];
up [i] = xID;
i = temp;
\}
return xID;
\}
(New?) runtime for Find:

Interlude: A Really Slow Function

Ackermann's function is a really big function $\mathrm{A}(x, y)$ with inverse $\alpha(x, y)$ which is really small

How fast does $\alpha(x, y)$ grow?
$\alpha(x, y)=4$ for x far larger than the number of atoms in the universe $\left(2^{300}\right)$
α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences

A More Comprehensible Slow Function

$\log ^{*} \boldsymbol{x}=$ number of times you need to compute log to bring value down to at most 1

$$
\begin{aligned}
& \text { E.g. } \log ^{*} 2=1 \\
& \log ^{*} 4=\log ^{*} 2^{2}=2 \\
& \log ^{*} 16=\log ^{*} 2^{2^{2}}=3 \\
& \log ^{*} 65536=\log ^{\star} 2^{2^{22}}=4 \\
& \text { 1) } \log ^{\star} 2^{65536}=\ldots \ldots \ldots \ldots \ldots=5
\end{aligned}
$$

$$
(\log \log \log 16=1)
$$

$$
\log ^{*} 65536=\log ^{*} 2^{2^{22}}=4 \quad(\log \log \log \log 65536=
$$

Take this: $\alpha(m, n)$ grows even slower than $\log ^{*} n!!$

Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $O(p \cdot \alpha(p, n))$

For all practical purposes this is amortized constant time:
$O(p \cdot 4)$ for p operations!

- Very complex analysis

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log \mathrm{n})$.
- Time complexity for $\mathrm{m} \geq \mathrm{n}$ operations on n elements is $O\left(m \log ^{*} n\right)$ where $\log ^{*} n$ is a very slow growing function.
- Log * $\mathrm{n}<7$ for all reasonable n . Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
- average time per operation is essentially a constant.
- worst case time for a PC-Find is $\mathrm{O}(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.

Student Activity

Find MST using Kruskal's

Total Cost:

- Now find the MST using Prim's method.

Under what conditions will these methods give the same result?

Draw the UpTree

Nodes	A	B	C	D	E	F	G	H
Parent								
Size								

Draw the UpTree

Nodes	A	B	C	D	E	F	G	H
Parent								
Size								

