

CSE 332: Data Structures & Parallelism

Lecture 22: Minimum Spanning Trees

Ruth Anderson Autumn 2016

Minimum Spanning Trees

Given an undirected graph G=(V,E), find a graph G'=(V, E') such that:

- ✓ E' is a subset of E
- $-\sqrt{|E'|} = |V| 1$
- G' is connected

G' is a minimum spanning tree.

$$-\sum_{(u,v)\in E'} c_{\underline{uv}} \quad \text{is minimal}$$

Applications:

Example: Electrical wiring for a house or clock wires on a chip

 Example: A road network if you cared about asphalt cost rather than travel time

11/30/2016

.

Student Activity

Find the MST

11/30/2016

Two Different Approaches

Prim's Algorithm Almost identical to Dijkstra's

Two Different Approaches

Prim's Algorithm Almost identical to Dijkstra's

One node, grow greedily

Kruskals's Algorithm

Completely different!

Forest of MSTs, *Union* them together.

(Need a new data structure for this)

5

Prim's algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A node-based greedy algorithm Builds MST by greedily adding nodes

Prim's Algorithm vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.

Prim's pick the unknown vertex with smallest cost where
 cost = distance from this vertex to the known set (in other words,
 the cost of the smallest edge connecting this vertex to the known
 set)

- Otherwise identical
- Compare to slides in Dijkstra lecture!

Prim's Algorithm for MST

- 1. For each node v, set v.cost = ∞ and v.known = false
- 2. Choose any node v. (this is like your "start" vertex in Dijkstra)
 - a) Mark v as known
 - b) For each edge (v,u) with weight w: set u.cost=w and u.prev=v
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node v with lowest cost
 - b) Mark v as known and add (v, v.prev) to output (the MST)
 - c) For each edge (v,u) with weight w,

```
if(w < u.cost) {
    u.cost = w;
    u.prev = v;
}</pre>
```

 $O(1/0.2) \times (1/0.2)$

Order added to known set:

∨ertex	known?	cost	pre∨
Α			
В			
С			
D			
E			
F			
G			

Order added to known set:

∨ertex	known?	cost	pre∨
Α	Υ	0	
В		(2)	Α
С		2	Α
D		1/	Α
E		??	
F		??	
G		??	

 $\frac{\text{Order added to known set:}}{\text{A, D}}$

∨ertex	known?	cost	pre∨
Α	Υ	0	
В		2	Α
С		1	D
D	Υ	1	Α
E		1	D
F		6	D
G		5	D

Order added to known set: A, D, C

∨ertex	known?	cost	pre∨
Α	Υ	0	
В		2	Α
С	Υ	1	D
D	Υ	1	Α
E		1	D
F		2	С
G		5	D

Order added to known set: A, D, C, E

∨ertex	rtex known? cost		pre∨
Α	Υ	0	
В		1	Е
С	Υ	1	D
D	Υ	1	Α
E	Υ	1	D
F		2	O
G		3	E

Order added to known set: A, D, C, E, B

∨ertex	known?	cost	(pre∨
Α	Υ	0	
В	Υ	1	П
С	Υ	1	D
D	Υ	1	A
E	Υ	1	D
F		2	С
G		3	E

Order added to known set: A, D, C, E, B, F

∨ertex	known?	cost	pre∨
Α	Υ	0	
В	Υ	1	E
С	Υ	1	D
D	Y 1		Α
E	Υ	1	D
F	Υ	2	С
G		3	E

Order added to known set: A, D, C, E, B, F, G

∨ertex	known?	cost	pre∨
Α	Υ	0	
В	Υ	1	E
С	Υ	1	D
D	Υ	1	Α
E	Υ	1	D
F	Υ	2	C
G	Υ	3	E

Student Activity

Start with V_1

Find MST using Prim's

V	Kwn	Distance	path
v1	T		
v2	T	∞ 2	٧,
v3	T	\$Y2	Vx4
v4	丁	ا کر	V ,
v5	T	676	V#7
v6	T	4851	VKX7
v 7	7	4	V4

Order Declared Known:

Total Cost: | 6

11/30/2016

Prim's Analysis

- · Correctness ??
 - A bit tricky
 - Intuitively similar to Dijkstra
 - Might return to this time permitting (unlikely)
- Run-time
 - Same as Dijkstra
 - O(|E|log |V|) using a priority queue

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

Kruskal's Algorithm for MST

An edge-based greedy algorithm Builds MST by greedily adding edges

- Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
- 2. While all vertices are not connected
 - a. Pick the lowest cost edge (u, v) and mark it
 - b. If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Aside: Union-Find aka Disjoint Set ADT

- Union(x,y) take the union of two sets named x and y
 - Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
 - Union(5,1)

```
Result: {3,5,7,1,6}, {4,2,8}, {9},
```

To perform the union operation, we replace sets x and y by $(x \cup y)$

- Find(x) return the name of the set containing x.
 - Given sets: {3,5,7,1,6}, {4,2,8}, {9},
 - Find(1) returns 5
 - Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case O(log n) for an individual Find operation).

Kruskal's pseudo code

```
void Graph::kruskal(){
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
                                                   |E| heap ops
  while (edgesAccepted < NUM VERTICES - 1) {
    e = smallest weight edge not deleted yet;
    // \text{ edge}(e) = (u, v)
                                             2|E| finds
    vset = s.tind(v);
    if (uset != vset) {
      edgesAccepted++;
                                          |V| unions
                                                               22
   11/30/2016
```

On heap of Kruskal's pseudo code edges void Graph::kruskal(){ Deletemin = log |E| int edgesAccepted = 0; DisjSet s(NUM VERTICES); |E| heap ops while (edgesAccepted < NUM_VERTICES - 1) e = smallest weight edge not deleted yet; // edge e = (u, v)uset = s.find(u); + 2|E| finds One for each vset = s.find(v); vertex in the if (uset != vset) { edge edgesAccepted++; $\mathbf{Find} = \mathbf{log} |\mathbf{V}|$ s.unionSets(uset, vset); |V| unions $|E| \log |E| + 2|E| \log |V| + |V|$ Union = O(1) $O(|E|\log|E|) = O(|E|\log|V|)$ $b/c \log |E| < \log |V|^2 = 2\log |V|$

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

11/30/2016

Find MST using Kruskal's

- Now find the MST using Prim's method.
- Under what conditions will these methods give the same result?

Student Activity

Draw the UpTree

Nodes	Α	В	С	D	E	F	G	Н
Parent								
Size							_	

Draw the UpTree

Nodes	Α	В	С	D	E	F	G	Н
Parent								
Size								

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose u and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

The inductive proof set-up

Let **F** (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: **F** is a subset of *one or more* MSTs for the graph (Therefore, once |**F**|=|**V**|-**1**, we have an MST.)

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)th edge (call it e), there was some MST T such that $F-\{e\} \subseteq T$...

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: $F-\{e\} \subseteq T$:

Two disjoint cases:

- If $\{e\} \subseteq T$: Then $F \subseteq T$ and we're done
- Else e forms a cycle with some simple path (call it p) in T
 - Must be since T is a spanning tree

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: F-{e} ⊆ T and e forms a cycle with p ⊆ T

- There must be an edge e2 on p such that e2 is not in F
 - Else Kruskal would not have added e
- Claim: e2.weight == e.weight

11/30/2016

Claim: F is a subset of one or more MSTs for the graph

```
So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T
e2 on p is not in F
```


- Claim: e2.weight == e.weight
 - If e2.weight > e.weight, then T is not an MST because
 T-{e2}+{e} is a spanning tree with lower cost: contradiction
 - If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and F-{e} ⊆ T. But e2 is not in F: contradiction

Claim: F is a subset of one or more MSTs for the graph

```
So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T
e2 on p is not in F
e2.weight == e.weight
```


- Claim: T-{e2}+{e} is an MST
 - It's a spanning tree because p-{e2}+{e} connects the same nodes as p
 - It's minimal because its cost equals cost of T, an MST
- Since F ⊆ T-{e2}+{e}, F is a subset of one or more MSTs
 Done.