cse332-16au-lec21-Dijkstra-day2

CSE 332: Data Structures & Parallelism
Lecture 21: Shortest Paths

Ruth Anderson
Autumn 2016

Today

+ Graphs
— Graph Traversals

1172572016

Shortest Path Applications

— Network routing
— Driving directions
— Cheap flight tickets

— Critical paths in project management
(see textbook)

Single source shortest paths

Done: BFS to find the minimum path Iengguefmm vtouin O(|E[+[V])

Actually, can find the minimum path length from v to every node
— Still O(|E[+(V])
— No faster way for a “distinguished” destination in the worst-case

Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

As before, asymptotically no harder than for one destination
Unlike before, BF S will not work

1172542014 4

Not as easy

Why BFS won't work: Shortest path may not have the fewest edges
— Annoying when this happens with costs of flights

We will assume there are no negative weights
* Problem is ill-defined if there are negative-cost cycles
+ Today's algorithm is wrong if edges can be negative

1172572016 5

Dijkstra's Algorithm

+ Named after its inventor Edsger Dijkstra (1930-2002)

— Truly one of the “founders” of computer science;
1972 Turing Award; this is just one of his many contributions

— Sample quotation: “computer science is no more about
computers than astronomy is about telescopes”

+ The idea: reminiscent of BFS, but adapted to handle weights

— Grow the set of nodes whose shortest distance has been
computed

— Nodes not in the set will have a “best distance so far”

— A priority queue will turn out to be useful for efficiency
i A i

1172572016

* Initially, start node has cost 0 and all other nodes have cost o0

+ At each step:
— Pick closest unknown vertex v
— Add it to the “cloud” of known vertices
— Update distances for nodes with edges from v

« That'sit! (Have to prove it produces correct answers)

1172542014

The Algorithm

1. Foreach node v, set v.cost = @ and v.known = false

2. Setsource.cost =0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known

c) Foreach edge (v, u) with weight w,
cl = v.cost + w//costof best paththrough+v tou

c2 = u.cost /costof best pathto u previously known
if (el < e2){ /ifthe path through v is better

u.cost = ¢l
u.path = v /forcomputing actual paths

1172542014

Important features

+ Once avertex is marked known, the cost of the shortest path to
that node is known

— The path is also known by following back-pointers

« While a vertex is still not known, another shorter path to it might
still be found

1172572016

Example #1

0 L 0 "
2 3 . Sj
\ b)’\v- +
/i 1 X7
O A %\xr ﬁ@f&
vertex | known? cust path
A T ()
5 | 2 A
c T l A
Order Added to Known Set: P F L’ A
E F— c.ha
hC F - =2’
¢ F <3
H F—- o=

11725720146 1

Example #1

Order Added to Known Set:

A

11725720146

0 2@ —JL__..®_3_.

vertex | known? cost path
A Y 0
B <2 A
C <1 A
D <4 A
E ?2?
F ??
G ??
H ?2?

11

Example #1

'|]' 2 -

Order Added to Known Set:

A C

11725720146

vertex | known? cost path
A Y 0
B <2 A
C Y 1 A
D <4 A
E <12 C
F ??
G ??
H ?2?

12

Example #1

'|]' 2 =

Order Added to Known Set:

11725720146

vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 _ A
D C<a’/| A
E <12 C
F =& B
G ??
H ?2?

13

Example #1

'|]' 2 =

Order Added to Known Set:

A,C,B,D

11725720146

@
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F <4 B
G ??
H ?2?

14

Example #1

'|]' 2 =

Order Added to Known Set:

A,C,B,D,F

11725720146

@
vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G ??

H <7 F

15

Example #1

0 2

8
4
12 vertex | known? | cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
Order Added to Known Set: E Z 12 c
A, C,B,D,FH F Y 4 B
G =8 H
H Y 7 F

11725720146 14

Example #1

'|]' 2 =

Order Added to Known Set:

A,C,B,D,FH,G

11725720146

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

/
AC.B.DFH GE

iV

11725720146

A)
PR a
known? cost [~—path
Y 0 —7
Y 2 A
Y 1 A
> | Y 4 A
v [[()
Y 4 B
Y 8 H |
\H Y 7 I
" 13

Features

* \When a vertex is marked known,
the cost of the shortest path to that node is known

— The path is also known by following back-pointers

* While a vertex is still not known,
another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
— A detail about how the algorithm works (client doesn’t care)
— Not used by the algorithm (implementation doesn’t care)
— ltis sorted by path-cost, resolving ties in some way

1172572016 19

Interpreting the Results

+ Now that we're done, how do we get the path from, say, Ato E?

vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
.. 11
' D Y 4 A
Order Added to Known Set: E y ” G
A.C.B,D,F.H G E F Y 4 B
G Y 8 H
H Y 7 F

1172872014 20

Stopping Short

+ How would this have worked differently if we were only interested in:
— The path from A to G?
— The path from A to Eﬁ

vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
.. 11
' D Y 4 A
Order Added to Known Set: E y ” G
A.C.B,D,F.H G E F Y 4 B
G Y 8 H
H Y 7 F

1172872014 21

Example #2

Order Added to Known Set:

vertex

known?

cost

path

11725720146

@Q@QmMmmo|o|m

2

Example #2

Order Added to Known Set:

11725720146

vertex | known? cost path
A 0
B ?2?
C ??
D ??
E ?2?
F ??
G ??

23

Example #2

vertex | known? cost path
A Y 0
B ??
C < A
D <1 A
Order Added to Known Set: E oo
A F ??
G ??

11725720146 24

Example #2

vertex | known? cost path

A Y 0

B D

C < A

D Y 1 A
Order Added to Known Set: E D
A. D F D

G < D

11725720146 st

Example #2

vertex | known? cost path

A Y 0

B <6 D

C Y 2 A

D Y A
Order Added to Known Set: E D
A D, C F C

G < D

11725720146 26

Example #

0 3

Order Added to Known Set:

A,D,CE

11725720146

vertex | known? cost path

A Y 0

B <3 E
C Y 2 A
D Y A
E Y D
F C
G < D

Example #

0 3

Order Added to Known Set:

A,D,C EB

11725720146

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F <4 C
G < D

Example #

0 3

Order Added to Known Set:

A,D,C EB,F

11725720146

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G <6 D

Example #

0 3

Order Added to Known Set:

A,D,C EB,FG

11725720146

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

Example #3

How will the best-cost-so-far for Y proceed?

Is this expensive?

1172542014

3l

Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

1172542014 32

A Greedy Algorithm

+ [Dijkstra’s algorithm
— For single-source shortest paths in a weighted graph (directed
or undirected) with no negative-weight edges

« An example of a greedy algorthn:
— At each step, irrevocably doeswhat seems best at that step
« A locally optimal step, not necessarily globally optimal
— 0nce a vertex is known, it is not revisited

+ Turns out to be globally optimal % . 3”4{ S‘\“ _j_;t Q‘P VNS

mak‘x Ch&r\ij&F VA
ﬂ@ v 1954

115252016 33

Z:S/’ 119#,?,/] - IO;S

2‘5‘; 12/1035/’\' .]2-/ l/ |/] EZ\ (C .rtf_d.%_;ﬁlf;ﬁwﬂ“f‘

Where are we?

« What should we do after learning an algorithm?
— Prove itis correct
* Not obvious!
+ We will sketch the key ideas
— Analyze its efficiency
« Will do better by using a data structure we learned earlier!

1172542014 34

Correctness: |Intuition

Rough intuition:

All the “*known” vertices have the correct shortest path

— True initially: shortest path to start nede has cost 0
— Ifit stays true every time we mark a node “*known”, then by

induction this holds and eventually everything is “*known”

Key fact we need: When we mark a vertex “known” we won't
discover a shorter path later!
— This holds only because Dijkstra’s algorithm picks the node
with the next shortest path-so-far

— The proofis by contradiction...

1172572016 35

Correctness. The Cloud (Rough Idea)

(V) Next shortest path from

ide the known cloud

Better path to ™\
v? No!

—— Source
—_—

Suppose visthe next node to be marked known ("added to the cloud”)
+ The best-known path to v must have only nodes “in the cloud”
— Since we've selected it, and we only know about paths through the
cloud to a node right outside the cloud
« Assume the actual shortest pathto v is different

— It wont use only cloud nodes, (or we would know about it), so it must
use non-cloud nodes

— Let w be the first non-cloud node on this path.

— The part ofthe path up to wis already known and must be shorter than
the best-known path to v. So v would not have been picked.

11/28/2016 (w woull tove ben peked) contradictionl

Il\f’lssuma P'W"j"*‘“";:j L{;}
Efficiency, first approach N Reprsantsim

Ilse pseudocode to determine asymptotic run-time
— Motice each edge is processed only ance

dijkstra{Graph &, Hode start) { } '5{\"‘[2
EJLE_EI_EII node: x.cost=infinity, x.known=false
start.cost = 0 oL!) e
|r— i E(nut_all E?iqg_ﬂe_knm_{_ﬂipl\f’i_
,_:Q 'fiT_f__ ovn node with smallest cos ;
b.knowvm = true O [J o . .
or each edge (b,a) in & 4_.—____—-___ﬁ}! J\‘]MES/ L":'Ilﬂfv'i

if{la.known) 0[(1) : _deqrel
if(%might([h,:b} < a.cost){ 7(1) 2 Dﬂ\%j l
o g ne

a.cost = .cost + weight(({b,a)) D{-l/j
a.path = b 4(})

} -

ST w1 4+ (vt a())
oLV + L v-d) —3 O
E

o P .

@’h’%ﬂ?

Efficiency, first approach

Use pseudocode to determine asymptotic run-time
— Notice each edge is processed only once

dijkstra(Graph G, Node start) { o
for each node: x.cost=infinity, x.known=false (VD

start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost O“VF)
b.known = true
for each edge (b,a) in G
if('a.known)
if(b.cost + weight((b,a)) < a.cost){
a.cost = b.cost + weight((b,a))
a.path = b
}

O(IE])

O(IVI*+ [E])
11/28/2016 38

Improving asympftotic running time

+ So far: O(IVE+ [E|)

+ We had a similar “problem” with topological sort being O([VE+ |E|)
* due to each iteration looking for the node to process next
— We solved it with a queue of zero-degree nodes

— But here we need the lowest-cost node and costs can change
as we process edges

+ Solution?

1172542014 39

Improving (?) asymptotic running time

+ So far: O(IVE+ [E|)

« We had a similar “problem” with topological sort being O([VE+ |E|)
* due to each iteration looking for the node to process next
— We solved it with a queue of zero-degree nodes

— But here we need the lowest-cost node and costs can change
as we process edges

+ Solution?

— A priority queue holding all unknown nodes, sorted by cost
— But must support decreaseKey operation

« Must maintain a reference from each node to its position in)
e priority queue
« Conceptually simple, but can be a pain to code up

1172542014 410

Efficiency, second approach
Ilse pseudocode to determine asymptotic run-time

dijkstra(Graph ¢, Hode start) {

.
for each node: x.cost=infinity, x.knownm=false 'ﬁ [\J'
start.cost = 0 .:‘j[_|j

build-heap with all nodes ¢— ()
ile(heap i=s not EII'IPtYLﬂ__{.—U Xl B\ 5
b = deleteMin() s D{;ﬂg V) — e € M \p
b.known = true g(|) tk .-+,me & f‘u'ﬁ'
or each edge (b,a) in & '(—-———-_'_'_--____ oUT é\EDr{‘

if(la.known) ol() ol
if(b.co=t + weight{(b,a)) < a.cost){ -
decreaseKey(a,“new cost — old cost”) D(‘H(_fjﬂ>
a.path = b DU)
y -

1152552016

o(Y+ [+ +V (legv +] +d- (1 1 gy)
© (X4 ey y:d-liaV)

(\/lmo}\)’ + = Iﬂf)_\/>

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0 O(VI)
build-heap with all nodes
while(heap is not empty) {
b = deleteMin/()
b.known = true
for each edge (b,a) in G
if('a.known)
if(b.cost + weight((b,a)) < a.cost){ O(|Elog|V|)
decreaseKey (a,"new cost - old cost”

a.path = b

O(VlleglVI)

} O([Vlleg|VI+|Ellog|V])

11/25/2014 41

Dense vs. sparse again

« First approach: IE]) or: O(VE)
« Second approach: O([V|log|V|+ Hllogl\fl}

- : _
+ S0 which is better? v&logV

— Sparse: O(|V]log|V[+[E[log|V]) (if [E[> V], then O(]E[log[V]))
— Dense: O(|V[+ |E]) , or: O(|V]?)

« But, rememberthese are worst-case and asymptotic
— Priority queue might have slightly worse constant factors

— On the other hand, for “normal graphs”, we might call
decreaseKey rarely (or not percolate far), making |E|log|V|

more like |E]

1172572016 43

Find the shortest
path to each vertex

from v,
V Known | Dist Path
from s
vO | T) Vo
vl | T 2 \Vy
5| T 2 N Order declared Knhown:
A 0
\{D V:a) \\.{2 \'!L-} \!J\JEUE

VB T | \{" U

order
vd| T | 2 \3 I
VB | T | Y \y redtrs
Ve | T G NE 44

