

CSE 332: Data Structures & Parallelism

Lecture 21: Shortest Paths

Ruth Anderson Autumn 2016

Today

- Graphs
 - Graph Traversals
 - Shortest Paths

Shortest Path Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...

Single source shortest paths

ل علي الله على الله

- Actually, can find the minimum path length from v to every node
 - Still O(|E|+(|V|)
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node v, find the minimum-cost path from v to every node

- As before, asymptotically no harder than for one destination
- · Unlike before, BFS will not work

Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative

D<u>ijk</u>stra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science;
 1972 Turing Award; this is just one of his many contributions
 - Sample quotation: "computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v
- That's it! (Have to prove it produces correct answers)

11/28/2016

7

The Algorithm

```
1. For each node v, set v.cost = \infty and v.known = false
```

- Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node v with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,

```
c1 = v.cost + w//cost of best path through v to u
c2 = u.cost //cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}</pre>
```

Important features

- Once a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Order Added to Known Set:

Α

∨ertex	known?	cost	path
Α	Υ	0	
В		≤ 2	Α
С		≤ 1	Α
D		≤ 4	Α
Е		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C

∨ertex	known?	cost	path
Α	Υ	0	
В		≤ 2	Α
С	Υ	1	Α
D		≤ 4	Α
E		≤ 12	С
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C, B

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1 _	Α
D		<4	Α
E		≤ 12	С
F		<u>≤4</u>	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

 $\mathsf{A}, \mathsf{C}, \mathsf{B}, \mathsf{D}, \mathsf{F}$

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 12	С
F	Υ	4	В
G		??	
Н		≤ 7	F

Order Added to Known Set:

 $\mathsf{A}, \mathsf{C}, \mathsf{B}, \mathsf{D}, \mathsf{F}, \mathsf{H}$

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 12	С
F	Υ	4	В
G		≤ 8	Н
Н	Υ	7	F

Order Added to Known Set:

 $\mathsf{A},\,\mathsf{C},\,\mathsf{B},\,\mathsf{D},\,\mathsf{F},\,\mathsf{H},\,\mathsf{G}$

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F

Poth From A to E: ABFHGE

Order Added to Known Set:

A, C, B, D, F, H, G, E

∨ertex	known?	cost	path
Α	Υ	0	
B	Y	2	A
)ပ	Υ	1	Α
D	Υ	4	Α
	Υ	_11	6
(E)	Υ	4	Œ
G	Υ	8	Ξ
H	Υ	7	F
			18

Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way

Interpreting the Results

• Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E	Υ	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F

Stopping Short

- · How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to D

Order Added to Known Set:

A, C, B, D, F, H, G, E

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E	Υ	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F

11/2&/2016 21

Order Added to Known Set:

∨ertex	known?	cost	path
Α		0	
В			
С			
D			
Е			
F			
G			

Order Added to Known Set:

∨ertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

Order Added to Known Set:

Α

∨ertex	known?	cost	path
Α	Υ	0	
В		??	
С		≤ 2	Α
D		≤ 1	Α
Е		??	
F		??	
G		??	

Order Added to Known Set:

A, D

∨ertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С		≤ 2	Α
D	Υ	1	Α
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Order Added to Known Set:

A, D, C

∨ertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С	Υ	2	Α
D	Υ	1	Α
E		≤ 2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E

∨ertex	known?	cost	path
Α	Υ	0	
В		≤ 3	E
С	Υ	2	Α
D	Υ	1	Α
E	Υ	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	3	E
С	Υ	2	Α
D	Υ	1	Α
E	Υ	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

 $\mathsf{A},\,\mathsf{D},\,\mathsf{C},\,\mathsf{E},\,\mathsf{B},\,\mathsf{F}$

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	3	E
С	Υ	2	Α
D	Υ	1	Α
E	Υ	2	D
F	Υ	4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B, F, G

∨ertex	known?	cost	path
Α	Υ	0	
В	Υ	3	E
С	Υ	2	Α
D	Υ	1	Α
E	Υ	2	D
F	Υ	4	С
G	Υ	6	D

How will the best-cost-so-far for Y proceed?

Is this expensive?

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- · Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- · An example of a greedy algorithm:
 - At each step, irrevocably does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited

Making Change- use smallest # of coins

11/28/2016

The smallest # of coins 25, 10,5,1 - 10,5 25, 12, 10, 5, 1 - 12, 1, 1 K Greedy algorithm

does not work in
this case

Where are we?

- · What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - · We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Idea)

Suppose v is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - Since we've selected it, and we only know about paths through the cloud to a node right outside the cloud
- Assume the actual shortest path to v is different
 - It won't use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
 - Let w be the first non-cloud node on this path.
 - The part of the path up to w is already known and must be shorter than
 the best-known path to v. So v would not have been picked.

11/28/2016 (w would have been picked) Contradiction! 36

Assume Adjacency List Ch Representation

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0 0(1)
 while (not all nodes are known) { \times
  b find unknown node with smallest cost
   b.known = true D
   rfor each edge (b,a) in G 🗸
    if(!a.known) 0(1
      if(b.cost + weight((b,a)) < a.cost) { 7(1)}
        a.cost = b.cost + weight((b,a))
        a.path = b o(1)
```

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
        if (b.cost + weight((b,a)) < a.cost) {
        a.cost = b.cost + weight((b,a))
        a.path = b
    }
}
O(|V|<sup>2</sup>)
O(|E|)
O(|V|<sup>2</sup>+ |E|)
```

Improving asymptotic running time

- So far: O(|V|²+ |E|)
- We had a similar "problem" with topological sort being O(|V|²+ |E|)
- due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges

Solution?

Improving (?) asymptotic running time

- So far: O(|V|²+ |E|)
- We had a similar "problem" with topological sort being O(|V|²+ |E|)
- due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- · Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its position in the priority queue
 - · Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0 0(|
 build-heap with all nodes — 0
 while (heap is not empty)
   b = deleteMin() (log V)
b.known = true o(1)
   for each edge (b,a) in G 🤆
    if(!a.known) o(/)
     if(b.cost + weight((b,a)) < a.cost){
       decreaseKey(a, "new cost - old cost") O(log V)
       a.path = b \cap (
                 + V ( log V + ] + d. ( 1 + 1 + log V + 1))
   X + VlogV + V·d·logV)
O(VlogV + ElogV)
```

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
    if(b.cost + weight((b,a)) < a.cost) {
        decreaseKey(a, "new cost - old cost")
        a.path = b
    }
}
O(|V||og|V|)
O(|E||og|V|)</pre>
```

Dense vs. sparse again

- First approach: O(V/2)+ |E|) or: O(V/2)
- Second approach: O(|V|log|V|+|Ellog|V|)
- · So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)

VZlogV

- Dense: $O(|V|^2 + |E|)$, or: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

Find the shortest path to each vertex from v₀

٧	Known	Dist from s	Path
v0	τ	6	٧o
v1	丁	3	V4
v2	ナ	2	Vο
v3	丁		٧.
v4	T	Z	V ₃
v5	Т	4	V2
v6	丁	6	V3

Order declared Known: