cse332-16au-lec20-TopoSort-ink

CSE 332: Data Structures & Parallelism
Lecture 20: Topological Sort / Graph Traversals

Ruth Anderson
Autumn 2016

Today

+ Graphs
— Representations

— Topological Sort
— Graph Traversals

1172172016

Disclairmer: Do not use for official advising purposes!
s » (Implies that CSE 332 is a pre-req for CSE 312 — not true)

Topologr'caIuSoﬁ
O rder g

Problem: Given a DAG 6= (V,E), output all the vertices in order
such that if no vertex appears before any other vertex that has
an edge to it

Example input:

Example output:
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

1172172016 3

Valid Topological
Sorts: |

022 Y
] 237
)03y
324
z 3y

1172172016 _.L- O

Questions and comments

*

Why do we perform topological sorts only on DAGs?

+ Is there always a unique answer?

+ What DAGs have exactly 1 answer?

+ Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

1172172016 5

Questions and comments

*

Why do we perform topological sorts only on DAGs?
— Because a cycle means there is no correct answer

+ Is there always a unique answer?
— No, there can be 1 or more answers; depends on the graph

+ What DAGs have exactly 1 answer?
— Lists

+ Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

1172172016 i

Topological Sort Uses

*

Figuring out how to finish your degree

+ Computing the order in which to recompute cells in a
spreadsheet

+ Determining the order to compile files using a Makefile

* In general, taking a dependency graph and coming up with an
order of execution

1172172016

A First Algorithm for Topological Sort

1. Label {"mark") each vertex with its in-degree
— Think"write in afield in the vertex"

— Could also dothis via a data structure (e.g., array) on the side

2. While there are wertices not yet output:
a) Choose a vertex vwith labeled with in-degree aof 0

by Cutput v and concegfually remove it from the graph
c) Foreach vertex w adjacent to v (i.e. w such that (v w) in g},

decrement the in-degree of w
}'t[-ﬁ/l"i—’
oo

“T\5 5T Ez
SPGB /7 et

Q_‘H______;E

O

|

AR A BIN | g
s [Py /
L} (]

115212016

-

A First Algorithm for Topological Sort

1. Label {"mark") each vertex with its in-degree
— Think"write in afield in the vertex"

— Could also dothis via a data structure (e.g., array) on the side

2. While there are wertices not yet output:

a) Choose aﬁﬂw‘l_@_@d with in-degree af 0

by Cutput v and concegfually remove it from the graph

c) Foreach vertex w adjacent to v (i.e. w such that (v w) in g},
decrement the in-degree of w

115212016

Example Output:

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed?
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1

117212016 0

Example Output: 126

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1

117212016 10

Example Output: 126
142

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1

117212016 1

Example Output: 126
142

143

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x X

In-degree: 0 O 2

1 0 0 0 0
0

117212016 17

Example Output: 126
142

143
311

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 0 0

0

117212016 13

Example Output: 126
142

143
311
331

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1T 0 1 0 0 0 0
0

117212016 14

142
143
311
331
332
Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x X X X X
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 1 0 O 0
0 0

117212016 15

Qutput: 126
142
143
311
331
332
312

Example

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x X X X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1T 0 1 0 0o 1 0 0 0
0 0

117212016 lé

Example Output: 126
142

143
311
331
332
312
341

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x X X X X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1T 0 1 0 0o 1 0 0 0
0 0

117212016 17

Example Output: 126
142

143
311
331
332
312
341
351

Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x X X X X X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1T 0 1 0 o 1 0 0 0 O
0 0

0
1142172016 13

Qutput: 126
Example 142
143
311
331
332
312
341
351
333
352
440
Node: 126 142143 311 312 331 332 333 341 351 352 440
Removed? x x x X X X X X X X X X
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 o 1 0 0 0 O
0 0 0

117212016 19

A couple of things to note

* Needed a vertex with in-degree of 0 to start
— No cycles

+ Ties between vertices with in-degrees of 0 can be broken
arbitrarily

— Potentially many different correct orders

1172172016

20

Topological Sort: Running time?

""i labelEachVertexWithItsInDegree () ; O(\/'Jf-t:,>

— e o
~for (ctr=0; ctr < numVertices; ctr++){ V +,meg

v = findNewVertexOfDegreeZero() <— CJ(U’)
put v next in output o(!)
for each w adjacent to vd *hwut_j'

w.indegree--; of |)
v}

Of (vie) *+ (\/J 4 d’W))

o (vr&) + v° + V rY4)

OQ\[Z"F': E

1172172016 21

*

Topological Sort: Running time?

labelEachVertexWithItsInDegree () ;
for(ctr=0; ctr < numVertices; ctr++){
v = findNewVertexOfDegreeZero()
put v next in output
for each w adjacent to v
Ww.indegree—-;

What is the worst-case running time?
— Initialization O(|V| + |[E]) (assuming adjacency list)
— Sum of all find-new-vertex O{lVlz} (because each O(|V]))
— Sum of all decrements O(|E|) (assuming adjacency list)
— So total is O(V|? + |E[) = not good for a sparse graph!

1172172016

21

Doing better

The trick is to avoid searching for a zero-degree node every time!
— Keep the “pending” zero-degree nodes in a list, stack, queue,

hox, table, or something
— Order we process them affects output but not correctness or
efficiency provided addfremove are both O(1)

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v =dequeue()

b) Output v and remove it from the graph

For each vertex w adjacent to v (i.e. w such that (v.w) in E),
decrement the in-degree of w, if new degree is 0, enqueue it

23

c)

117212016

Topological Sort(optimized): Running time?

[/labelhllhndEnqueueZeros (): Y Q-'" ré)
for (ctr=0; ctr < numVertices; ctr++){\/ ‘]‘IME._S.

v = dequeue() ; {2_(__1)
put v next in output 0(1)
or each w adjacent to v { Ol +'\}w(,_‘§
w.lndegree--; O 1
if (w.indegree==0) 9 (\)
enqueue (w) ; 0(\)

}
}

OC\He’)

117212016 24

Topological Sort(optimized): Running time?

labelAllAndEnqueueZeros () ;
for (ctr=0; ctr < numVertices; ctr++){

v = dequeue()

put v next in output

for each w adjacent to v {
W.1lndegree—--;
if (w.indegree==0)

enqueue (w) ;
}
}

+ What is the worst-case running time?
— Initialization: O([V[*|E|) (assuming adjacenty list)
— Sum of all enqueues and dequeues: O(|V|)
— Sum of all decrements: O(|E|) (assuming adjacency list)

— Sototal is O(|E] + [V]) = much better for sparse graph!
1172172016 25

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable (i.e., there exists a path) from v

— Possibly “do something” for each node (an iterator!)
+ E.g. Print to output, set some field, etc.
Related:
+ Is an undirected graph connected?
+ Is a directed graph weakly / strongly connected?
— For strongly, need a cycle back to starting node

Basic idea:
— Keep following nodes
— But “mark” nodes after visiting them, so the traversal terminates
and processes each reachable node exactly once

1172172016 26

Graph Traversal: Abstract Idea

traverseGraph (Node start) {

Set pending = emptySet() ;
pending.add{stﬁzET_—-ﬁ
mark start as visited
while (pending is not empty) {

next = pending.remove(}

for each node u adjacent to next

i1f(u i1s not marked) {
mark u

pending.add(u)
} —

1172172016

27

Running time and options

+ Assuming add and remove are O(1), entire traversal is O(|E|)
+ Use an adjacency list representation

* The order we traverse depends entirely on how add and remove
ork/are implemented

CN—\Depth-first graph search (DFS): a stack
— Breadth-first graph search (BFS): a queue

« DFS and BFS are “big ideas” in computer science

— Depth: recursively explore one part before going back to the
other parts not yet explored

— Breadth: Explore areas closer to the start node first

11721720146 25

Recursive DFS, Example : trees

« Atreeisa graph and DFS and BFS are particularly easy to “see”

DFS(Node start) {
mark and “process'{e.g. print) start
for each node u adjacent to start
1f u is not marked
DFS (u)

Order processed: A,B,D,E,C,F, G, H
« Exactly what we called ;‘pre-order traversal” for trees

+ The marking is not needed here, but we need it to support arbitrary
graphs , we need a way to process each node exactly once
1172172016 29

DFS with a stack, Example. trees

\/’ DF52?(Hode start) {
@ initialize @ s to hold =start
mark start as wisited
while(s is not empty) {
@ @ next = s{_._pp,p(} F/ and “process”
@ @ G for each node u adjacent to next
if{u is not marked)
@ @ mark u and Ifll_sih onto =
}
H

Order processed:
« A different but perfectly fine traversal

115212016 in

She

DFS with a stack, Example: trees

DFS2 (Node start) {
G’ initialize stack s to hold start
mark start as visited

while(s 1s not empty) {
C) GD next = s.pop() // and “process”
@ @ @ for each node u adjacent to next
1f(u is not marked)
@ @ mark u and push onto s
}
}

Order processed: A,C,F,H,G,B,E, D
+ A different but perfectly fine traversal

117212016 3l

BFS with a queue, Example: trees

BFS (Node start) {

G’ initialize queue g to hold start
mark start as visited
while(g 1s not empty) {
9 @ next = g.dequeue()// and "process”
@ @ @ for each node u adjacent to next
1f(u is not marked)
@ @ mark u and enqueue onto g
}
}

Order processed:
+ A “level-order” traversal

117212016 32

BFS with a queue, Example: trees

BFS (Node start) {
@ initialize queue g to hold start
mark start as wvisited
while(g 1s not empty) {
9 @ next = g.dequeue()// and "process”
@ @ @ for each node u adjacent to next
1f(u is not marked)
@ @ mark u and enqueue onto g

Order processed: A,B,C, D, E,F, G, H
+ A “level-order” traversal

117212016 33

DFS/BFS Comparison

Breadth-first search:
« Always finds shortest paths, i.e., “optimal solutions
— Better for “what is the shortest path from xto y”

* Queue may hold O(]V]) nodes (e.g. at the bottom level of binary tree
of height h, 2" nodes in queue)

Depth-first search:
« Can use less space in finding a path

— If longest path in the graph is p and highest out-degree is d then
DF S stack never has more than d*p elements

A third approach: lterative deepening (IDDFS).
— Try DFS but don't allow recursion more than K levels deep.

— Ifthat fails, increment K and start the entire search over
« Like BFS, finds shortest paths. Like DFS, less space.

1172172016 34

Saving the path

* Qur graph traversals can answer the “reachability question™
— “Is there a path from node x to node y?”

+ Q: But what if we want to output the actual path?

— Like getting driving directions rather than just knowing it's
possible to get therel

* A: Like this:
— Instead of just “marking” a node, store the previous node

along the path (when processing u causes us to add v to the
search, set v.path field to be u)

— When you reach the goal, follow path fields backwards to
where you started (and then reverse the answer)

— If just wanted path /ength, could put the integer distance at
each node instead

1172172016 35

Example using BFS

What is a path from Seattle to Austin
— Remember marked nodes are not re-enqueued
— Note shortest paths may not be unique

Chicago

Seattle

Austin

San Francisco

11/21/2016 Dallas 16

Example using BFS

What is a path from Seattle to Austin
— Remember marked nodes are not re-enqueued
— Note shortest paths may not be unique

0 1

Chicago
Seattle

N

Austin

San Francisco 5 '

1172172016 37

