
CSE 332: Data Structures & Parallelism

Lecture 18: Race Conditions & Deadlock

Ruth Anderson

Autumn 2016

Outline

Done:

– The semantics of locks

– Locks in Java

– Using locks for mutual exclusion: bank-account example

This lecture:

– Race Conditions: Data Races vs. Bad Interleavings

– Guidelines/idioms for shared-memory and using locks correctly

– Coarse-grained vs. fine-grained (for locks and critical sections)

– Deadlock

2 11/16/2016

Race Conditions

A race condition occurs when the computation result depends on

scheduling (how threads are interleaved)

– If T1 and T2 happened to get scheduled in a certain way, things go

wrong

– We, as programmers, cannot control scheduling of threads;

– Thus we need to write programs that work independent of

scheduling

Race conditions are bugs that exist only due to concurrency

– No interleaved scheduling problems with only 1 thread!

Typically, problem is that some intermediate state can be seen by

another thread; screws up other thread

– Consider a ‘partial’ insert in a linked list; say, a new node

has been added to the end, but ‘back’ and ‘count’ haven’t

been updated

3 11/16/2016

Race Conditions:

 Data Races vs. Bad Interleavings

We will make a big distinction between:

 data races and bad interleavings

– Both are kinds of race-condition bugs

– Confusion often results from not distinguishing these or

using the ambiguous “race condition” to mean only one

11/16/2016 4

Data Races (briefly)

• A data race is a specific type of race condition that can

happen in 2 ways:

– Two different threads potentially write a variable at the

same time

– One thread potentially writes a variable while another reads

the variable

• Not a race: simultaneous reads provide no errors

• ‘Potentially’ is important

– We claim the code itself has a data race independent of any

particular actual execution

• Data races are bad, but we can still have a race condition, and

bad behavior, when no data races are present…through

bad interleavings (what we will discuss now).

11/16/2016 5

Stack Example (pseudocode)

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() {

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 return array[index--];

 }

}

11/16/2016 6

Example of a Race Condition,

 but not a Data Race

7

class Stack<E> {

 … // state used by isEmpty, push, pop

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 …

 }

 E peek() { // this is wrong

 E ans = pop();

 push(ans);

 return ans;

 }

}

11/16/2016

peek, sequentially speaking

• In a sequential world, this code is of questionable style, but

unquestionably correct

• The “algorithm” is the only way to write a peek helper method if

all you had was this interface:

8

interface Stack<E> {

 boolean isEmpty();

 void push(E val);

 E pop();

}

class C {

 static <E> E myPeek(Stack<E> s){ ??? }

}

11/16/2016

Problems with peek

• peek has no overall effect on the shared data

– It is a “reader” not a “writer”

– State should be the same after it executes as before

• But the way it is implemented creates an inconsistent

intermediate state

– Calls to push and pop are synchronized

• So there are no data races on the underlying array/index

– There is still a race condition though

• This intermediate state should not be exposed

– Leads to several bad interleavings

9 11/16/2016

E peek() {

 E ans = pop();

 push(ans);

 return ans;

}

Example 1: peek and isEmpty

• Property we want: If there has been a push (and no pop),

then isEmpty should return false

• With peek as written, property can be violated – how?

10

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

11/16/2016

Example 2: peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2 Thread 1 (peek)

11/16/2016 13

Example 3: peek and pop

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 Thread 1 (peek)

push(x)

push(y)

E e = pop()

11/16/2016 15

Example 4: peek and peek

• Property we want: peek doesn’t throw an exception unless

stack is empty

• With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

11/16/2016 16

The fix

• In short, peek needs synchronization to disallow interleavings

– The key is to make a larger critical section

• That intermediate state of peek needs to be protected

– Use re-entrant locks; will allow calls to push and pop

– Code on right is example of a peek external to the Stack class

18

class Stack<E> {

 …

 synchronized E peek(){

 E ans = pop();

 push(ans);

 return ans;

 }

}

class C {

 <E> E myPeek(Stack<E> s){

 synchronized (s) {

 E ans = s.pop();

 s.push(ans);

 return ans;

 }

 }

}

11/16/2016

The wrong “fix”

• Focus so far: problems from peek doing writes that lead to an

incorrect intermediate state

• Tempting but wrong: If an implementation of peek (or isEmpty)

does not write anything, then maybe we can skip the

synchronization?

• Does not work due to data races with push and pop…

19 11/16/2016

Example, (pseudocode not complete)

20

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 boolean isEmpty() { // unsynchronized: wrong?!

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 return array[index--];

 }

 E peek() { // unsynchronized: wrong!

 return array[index];

 }

}

11/16/2016

Why wrong?

• It looks like isEmpty and peek can “get away with this” since push

and pop adjust the state “in one tiny step”

• But this code is still wrong and depends on language-implementation

details you cannot assume

– Even “tiny steps” may require multiple steps in the implementation:
array[++index] = val probably takes at least two steps

– Code has a data race, allowing very strange behavior

• Compiler optimizations may break it in ways you had not

anticipated

• See Grossman notes for more details

• Moral: Do not introduce a data race, even if every interleaving you can

think of is correct

21 11/16/2016

The distinction

22

The (poor) term “race condition” can refer to two different things

resulting from lack of synchronization:

1. Data races: Simultaneous read/write or write/write of the same

memory location

– (for mortals) always an error, due to compiler & hardware

– Original peek example has no data races

2. Bad interleavings: Despite lack of data races, exposing bad

intermediate state

– “Bad” depends on your specification

– Original peek had several bad interleavings

11/16/2016

Getting it right

Avoiding race conditions on shared resources is difficult

– What ‘seems fine’ in a sequential world can get you into

trouble when multiple threads are involved

– Decades of bugs have led to some conventional wisdom:

 general techniques that are known to work

Next we discuss this conventional wisdom!

– Parts paraphrased from “Java Concurrency in Practice”

• Chapter 2 (rest of book more advanced)

– But none of this is specific to Java or a particular book!

– May be hard to appreciate in beginning, but come back to

these guidelines over the years!

23 11/16/2016

3 choices

For every memory location (e.g., object field) in your program, you

must obey at least one of the following:

1. Thread-local: Do not use the location in > 1 thread

2. Immutable: Do not write to the memory location

3. Shared-and-mutable: Use synchronization to control access to

the location

25

all memory thread-local

memory
immutable

memory

need

synchronization

11/16/2016

1. Thread-local

Whenever possible, do not share resources

– Easier to have each thread have its own thread-local copy

of a resource than to have one with shared updates

– This is correct only if threads do not need to communicate

through the resource

• That is, multiple copies are a correct approach

• Example: Random objects

– Note: Because each call-stack is thread-local, never need

to synchronize on local variables

In typical concurrent programs, the vast majority of objects should

be thread-local: shared-memory should be rare – minimize it

26 11/16/2016

2. Immutable

Whenever possible, do not update objects

– Make new objects instead!

• One of the key tenets of functional programming (see CSE 341)

– Generally helpful to avoid side-effects

– Much more helpful in a concurrent setting

• If a location is only read, never written, then no synchronization

is necessary!

– Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it

27 11/16/2016

3. The rest: Keep it synchronized

After minimizing the amount of memory that is (1) thread-shared and

(2) mutable, we need guidelines for how to use locks to keep other

data consistent

Guideline #0: No data races

• Never allow two threads to read/write or write/write the same

location at the same time (use locks!)

– Even if it ‘seems safe’

Necessary:

• a Java or C program with a data race is almost always wrong

But Not sufficient: Our peek example had no data races, and it’s still

wrong…

11/16/2016 28

Consistent Locking

Guideline #1: Use consistent locking

• For each location needing synchronization, have a lock that is

always held when reading or writing the location

• We say the lock guards the location

• The same lock can (and often should) guard multiple locations

(ex. multiple fields in a class)

• Clearly document the guard for each location

• In Java, often the guard is the object containing the location

– this inside the object’s methods

– But also often guard a larger structure with one lock to

ensure mutual exclusion on the structure

11/16/2016 29

Consistent Locking (continued)

• The mapping from locations to guarding locks is conceptual

– Must be enforced by you as the programmer

• It partitions the shared-and-mutable locations into “which lock”

30

Consistent locking is:

• Not sufficient: It prevents all data races but still allows bad interleavings

– Our peek example used consistent locking, but still had exposed

intermediate states (and allowed potential bad interleavings)

• (Aside) Not necessary: You could have different locking protocols for different phases of your program

as long as all threads are coordinated moving from one phase to next. eg. at start of program data

structure is being updated (needs locks), later it is not modified so can be read simultaneous (no locks).

11/16/2016

Lock granularity

Coarse-grained: Fewer locks, i.e., more objects per lock

– Example: One lock for entire data structure (e.g., array)

– Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock

– Example: One lock per data element (e.g., array index)

– Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum

31

…

…

11/16/2016

Trade-offs

Coarse-grained advantages:

– Simpler to implement

– Faster/easier to implement operations that access multiple

locations (because all guarded by the same lock)

– Much easier for operations that modify data-structure shape

Fine-grained advantages:

– More simultaneous access (performance when coarse-

grained would lead to unnecessary blocking)

– Can make multi-node operations more difficult: say, rotations

in an AVL tree

Guideline #2: Start with coarse-grained (simpler) and move to fine-

grained (performance) only if contention on the coarser locks

becomes an issue.

11/16/2016 32

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for entire hashtable

• Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup?

Which makes implementing resize easier?

– How would you do it?

If a hashtable has a numElements field, maintaining it will destroy

the benefits of using separate locks for each bucket, why?

11/16/2016 33

Critical-section granularity

A second, orthogonal granularity issue is critical-section size

– How much work to do while holding lock(s)?

If critical sections run for too long?

–

If critical sections are too short?

–

11/16/2016 35

Example 1: Critical-section granularity

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

– expensive() takes in the old value, and computes a new

one, but takes a long time

synchronized(lock) {

 v1 = table.lookup(k);

 v2 = expensive(v1);

 table.remove(k);

 table.insert(k,v2);

}

11/16/2016 37

Example 2: Critical-section granularity

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

synchronized(lock) {

 v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

 table.remove(k);

 table.insert(k,v2);

}

11/16/2016 39

Example 3: Critical-section granularity

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

done = false;

while(!done) {

 synchronized(lock) {

 v1 = table.lookup(k);

 }

 v2 = expensive(v1);

 synchronized(lock) {

 if(table.lookup(k)==v1) {

 done = true; // I can exit the loop!

 table.remove(k);

 table.insert(k,v2);

}}}

11/16/2016 41

Atomicity

An operation is atomic if no other thread can see it partly executed

– Atomic as in “appears indivisible”

– Typically want ADT operations atomic, even to other threads

running operations on the same ADT

Guideline #4: Think in terms of what operations need to be atomic

– Make critical sections just long enough to preserve atomicity

– Then design the locking protocol to implement the critical

sections correctly

That is: Think about atomicity first and locks second

11/16/2016 43

Don’t roll your own

• In “real life”, it is unusual to have to write your own data

structure from scratch

– Implementations provided in standard libraries

– Point of CSE332 is to understand the key trade-offs,

abstractions, and analysis of such implementations

• Especially true for concurrent data structures

– Far too difficult to provide fine-grained synchronization

without race conditions

– Standard thread-safe libraries like ConcurrentHashMap

written by world experts

Guideline #5: Use built-in libraries whenever they meet your needs

44 11/16/2016

Deadlock

11/16/2016 45

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

46

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Potential problems?

11/16/2016

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

47

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Notice during call to a.deposit, thread holds two locks

– Need to investigate when this may be a problem

11/16/2016

The Deadlock

48

acquire lock for x

do withdraw from x

block on lock for y

acquire lock for y

do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Suppose x and y are static fields holding accounts

Thread 2: y.transferTo(1,x)

11/16/2016

Ex: The Dining Philosophers

• 5 philosophers go out to dinner together at an Italian restaurant

• Sit at a round table; one fork per setting

• When the spaghetti comes, each philosopher proceeds to grab their

right fork, then their left fork, then eats

• ‘Locking’ for each fork results in a deadlock

11/16/2016 49

Deadlock, in general

A deadlock occurs when there are threads T1, …, Tn such that:

• For i=1,..,n-1, Ti is waiting for a resource held by T(i+1)

• Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

– Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to techniques to

ensure a cycle can never arise

50 11/16/2016

Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized

– Exposes intermediate state after withdraw before deposit

– May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing

transfers between them

– Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always acquire

locks in the same order

– Entire program should obey this order to avoid cycles

– Code acquiring only one lock can ignore the order

51 11/16/2016

Ordering locks

52

class BankAccount {

 …

 private int acctNumber; // must be unique

 void transferTo(int amt, BankAccount a) {

 if(this.acctNumber < a.acctNumber)

 synchronized(this) {

 synchronized(a) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 else

 synchronized(a) {

 synchronized(this) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 }

}
11/16/2016

Aside: Another example StringBuffer

From the Java standard library

53

class StringBuffer {

 private int count;

 private char[] value;

 …

 synchronized append(StringBuffer sb) {

 int len = sb.length();

 if(this.count + len > this.value.length)

 this.expand(…);

 sb.getChars(0,len,this.value,this.count);

 }

 synchronized getChars(int x, int, y,

 char[] a, int z) {

 “copy this.value[x..y] into a starting at z”

 }

}

11/16/2016

Aside: Two problems with StringBuffer

Problem #1: Lock for sb is not held between calls to sb.length

and sb.getChars

– So sb could get longer

– Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in

opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:

– Do not want unique ids on every StringBuffer

– Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc)

– Up to clients to avoid such situations with own protocols

54 11/16/2016

Perspective

• Code like account-transfer and string-buffer append are difficult

to deal with for deadlock

• Easier case: different types of objects

– Can document a fixed order among types

– Example: “When moving an item from the hashtable to the

work queue, never try to acquire the queue lock while

holding the hashtable lock”

• Easier case: objects are in an acyclic structure

– Can use the data structure to determine a fixed order

– Example: “If holding a tree node’s lock, do not acquire other

tree nodes’ locks unless they are children in the tree”

55 11/16/2016

Concurrency summary

• Concurrent programming allows multiple threads to access

shared resources (e.g. hash table, work queue)

• Introduces new kinds of bugs:

– Data races and Bad Interleavings

– Critical sections too small

– Critical sections use wrong locks

– Deadlocks

• Requires synchronization

– Locks for mutual exclusion (common, various flavors)

– Other Synchronization Primitives: (see Grossman notes)

• Reader/Writer Locks

• Condition variables for signaling others

• Guidelines for correct use help avoid common pitfalls

• Shared Memory model is not only approach, but other

approaches (e.g., message passing) are not painless

56 11/16/2016

