cse332-16au-lec16-PrefixAndSorting-day2

CSE 332: Data Structures & Parallelism

Lecture 16: Parallel Prefix, Pack, and Sorting

Ruth Anderson
Autumn 2016

Qutline

Done:
— Simple ways to use parallelism for counting, summing, finding
— Analysis of running time and implications of Amdahl’'s Law

Now: Clever ways to parallelize more than is intuitively possible
— Parallel prefix:
+ This “key trick” typically underlies surprising parallelization
« Enables other things like packs (aka filters)
— Parallel sorting: quicksort (not in place) and mergesort
+ Easy to get a little parallelism
+ With cleverness can get a lot

11707720146 2

The prefix-sum problem

Given int[] input, produce int[] output where:
output[i]==inEut[0]+input[1]+m+input[i]

input Ijﬂbmm
output 36 y 1)))

Sequential can be a CSE142 exam problem:
int[] prefix sum(int[] 1nput}{
int][] mutput = n 1nt input.length] ;

output[l = 1nput[0],
. . o gth, i++)

nput[l],

Does not seem parallelizable
— Work: O(n), Span: O(n)
— This algorithm is sequential, but a different algorithm has

Work: O(n), Span: O(1og n)
1107720164

Parallel prefix-sum

* The parallel-prefix algorithm does two passes
— Each pass has O(n) work and O(1log n) span

— Soin total there is O(n) work and O(log n) span
— So like with array summing, parallelism is n/logn
+ An exponential speedup

+ First pass builds a tree bottom-up: the “up” pass

+ Second pass traverses the tree top-down: the “down” pass

11707720146

Local bragging

Historical note:
— Original algorithm due to R. Ladner and M. Fischer at UWin 1977
— Richard Ladner joined the UW faculty in 1971 and hasn't left

B9,

1968'.; 19737 recent

11/07/201 6 5

Parallel Prefix: The Up Pass

We build want to build a binary tree where
* Root has sum ofthe range [x,y)
« If a node has sum of [lo hi) and hi=lo,
— Left child has sum of [lo,middle)
— Right child has sum of [middle,hi)
— Aleaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the free as we will
need it for the down pass

+ We do not need an actual linked structure
+ We could use an array as we did with heaps

Analysis of first step: Work = OCN) Span= () ([ua N)

11707720146

The algorithm, part 1

Specifically... .

1. Propagate ‘sum’ up: Build a binary tree where
— Roothassum of input[0]..input[n-1]
— Eachnode has sum of input[lo]..input[hi-1]
* Build up from leaves; parent.sum=left.sum+right.sum
— Aleafs sumisjustit's value; input[i]

This is an easy fork-join computation: combine results by actually
building a binary tree with all the sums of ranges

— Tree built bottom-up in parallel

— Could be more clever; ex. Use an array as tree representation
like we did for heaps

Analysis of first step: O(n) work, O(1leog n) span

11707720146 7

The (completely non-ob vious) idea:

:!:]1} an 1111+tml pass t:} gather range 0.8
information, enabling us to do a sum
second pass to get the answer fromleft
II;“\S:.WP !lfg:\]tl}mi range 0.4 range 4.3
the ‘sum’ for each sum sum
recursive block fromleft fromleft
range 0.2 range 2.4 range 4.6 range 6.8
"-————> sum [0 sum sum sum
fromleft fromleft fromleft fromleft
rot1 |(jr1.2 ||r23 |(|r34 ||[r45 |[r 56 ||[r67 ||r7.8
—> s | :
f f f f f f f f
input 6 4 16 10 16 14 2 8
output
8

11707201 6

First pas

For each node, get

the sum of all values

in its range;:

propagate sum up

from leaves

Will work

like parallel
sum, but
recording
intermediate
information

input

output

110742016 ——

range 0.8
76
sum
/ frﬂmleft@\
range 04 range 4.8
sum 36 sum ~_40
fromleft fromieft)
range @ range 2.4 range 4.6 range 6.3
sum m \[sum 26 sum 30 sum
\ fromleft O fromleft iOS fromleft > (. | | fromleft
r 0.1 r1.2 ||ir 2.3 ||r 34 |(|r 4.5 r 56 ([r 6.7 ||r 7.8
S 6 4 S 16 (| 10 (|is 16 ||s 14 2 s 8
f o f f f f f f f
| 6 4 16 | 10 | 16 | 14 2 8
\
I

The algorithm, part 2

2. Propagate ‘fromleft’ down:
— Root given a fromLeft of 0
— Nodetakesits fromLeft value and
+ Passes its left child the same fromLeft

+ Passesits right child its fromLeft plus its left child's sum
(as stored in part 1)

— Atthe leaf for array position i,
coutput[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

— Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span
Analysis of second step:

Total for algorithm:
110772016 10

The algorithm, part 2

2. Propagate ‘fromleft’ down:
— Root given a fromLeft of 0
— Nodetakesits fromLeft value and
+ Passes its left child the same fromLeft

+ Passesits right child its fromLeft plus its left child's sum
(as stored in part 1)

— Atthe leaf for array position i,
coutput[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

— Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span
Analysis of second step: O(n) work, O(1og n) span

Total for algorithm: O(n) work, O(log n) span
1107720164 11

Second pass range 0.8
sum 76
. fromleft 0
Using ‘sum’, get the
sum of everything to
the left of this range range 0.4 range 4.8
(call it “fromlefc)y; | Sum 36 sum 40
1}i'01}agate {lm;’n f;'ﬂm fromleft 0 fromleft 36
root / \ / \
range 0.2 range 2.4 range 4.6 range 6.3
sum 10 sum 26 sum 30 sum 10
fromleft 0 fromleft 10 fromleft 36 fromleft 66
r 0.1 r1.2 |(|r 23 (|r 34 ([r45 ||r 56 |r67 ||r7.8
6 (/s 4 [|s 16 [|s 10 ||s 16 ||s 14 ||s 2 |[|s 8
f 0 (|[f 6 (|f 10 [|[f 26 |[f 36 ||[f 52 ||[f 66 ||f 68
input 6 4 16 10 16 14 2 8
output 6 10 26 36 52 66 68 76

110772014

12

Sequential cut-off

Adding a sequential cut-offisn't too bad:

+ Step One: Propagating Up the sums:

— Have aleaf node just hold the sum of a range of values
instead of just one array value (Sequentially compute sum
for that range)

— The tree itself will be shallower

+ Step Two: Propagating Down the fromLefts:

— Have leaf compute prefix sum sequentially over its [lo,hi):
output[lo] = fromLeft + input[lo];
for(i=lo+l; 1 < hi; 1++)

output[i] = output[i-1] + input[i]

11707720146

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattemn,
prefix-sum illustrates a pattern that arises in many, many problems

« Minimum, maximum of all elements to the left of 1

—

* Is there an element to the left of 1 satisfying some property?
« Count ofelements to the left of 1 satisfying some property

— This last one is perfect for an efficient parallel pack...
— Perfect for building on top of the “parallel prefix trick”

11707720146 14

Pack (think “Fifter’)

[Mon-standard terminology]

Given an array input, produce an array output containing anly
elements such that £{element) is true

- . - f: H'I_ _— —_ F -

[T S ' |
Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
£f: “is element > 107

output [17, 11, 13, 1%, 24]

= —

Farallelizable?
— Determining whether an element belongs in the output is easy

— But determining where an element belongs in the output is
hard;, seems to depend on previous results... .

T out | A ’B 210
] '\\- ‘ll -)
™ -

C'«:*"pﬂ f_":q/ J =k ”ﬂ(m

J

11072016

In this example

Parallel Pack = Filter =

element = 10

parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits (., o, o, o, 1,0, 1, 1, 0, 1]

2. Parallelprefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL(1=0; 1 < input.length; 1i++){

11707720146 lé

In this example

Parallel Pack = e
parallel map + llel prefix + el map

1. Parallef)map to compute a bit-vector for true elements:
input | [17, 4, 6, a, 0, 24]

bits @oo 1600 @

2. Farallel-preflx sum on the bII-VECIDr

bitsum @

3. Parallel map to pmdu
output [1'? @@ 24]
mutput = ze bitsum[n-1]

FORALL (1—0 1 { 1nput length; i++){
if (blts[l]
output[bltsum[l] 1] = input[i];

11707720146 17

Pack comments

*

First two steps can be combined into one pass
— Just using a different base case for the prefix sum
— No effect on asymptotic complexity

*

Can also combine third step into the down pass of the prefix sum
— Again no effect on asymptotic complexity

*

Analysis: O(n) work, O(log n) span
— 2 or 3 passes, but 3 is a constant ©

*

Parallelized packs will help us parallelize quicksort...
—

11707720146 15

Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time O(n 1og n)

Best / expected case work
1. Pick a pivot element 0O(1)
2. Partition all the data into: O(n)
A. The elaments less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C 2T (n/2)

Recurrence (assuming a good pivot):
T(O)=T(1)=1 n
T=0ln) ¥2T (u 'z?)

Run-time: O(nlogn})
“'-.___________/

How should we parallelize this?
110772016 19

Review. Really common recurrences

Should know how to solve recurrences but also recognize some
really common ones:

T(n=01)+ T(n-1) linear
Tim=0(1)+2T(nl2) linear
T(ny=0O(1)+ T(n/2) logarithmic
TmM=01)+2T(n-1) exponential
T(n=0m+ T(n-1) quadratic
CTm=0m+T(n/2) linear—,
T(n)=0O(n)+ 2T(nl2) O(n logn) >

Note big-Oh can also use more than one variable
« Example: can sum all elements of an n-by-m matrix in O(nm)

11707720146

20

Parallel Quicksort (version 1)

Best / expected case work
1. Pick a pivot elanent O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivet

C. The elements greater than the pivot
3. Recursively sort A and C 2T(n/2)

First: Do the two recursive calls in parallel

+ Work: O(h }-nla N —

+ Span: now recurrefige takés the form:

oo () = 0(n) + T (%
- O (W)

11707720146 21

Parallel Quicksort (version 1) (Soln)

Best / expected case work
1. Pick a pivot elanent O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivet

C. The elements greater than the pivot
3. Recursively sort A and C 2T(n/2)

First: Do the two recursive calls in parallel
* Work: unchanged of course, O(n log n)
+ Span: now recurrence takes the form:
T(n)=O(n)+1T(n/2) = O(n)
Span: O(n)
+ Soparallelism (i.e., work/span) is O(log n)

11707720146 21

Doing better

* log n) speed-up with an infinite number of processors is
okay, but a bit underwhelming

— Sort 10? elements 30 times faster

+ Google searches strongly suggest quicksort cannot do better
because the partition cannot be parallelized

— The Internet has been known to be wrong ©
— But we need auxiliary storage (no longer in place)

— In practice, constant factors may make it not worth it, but
remember Amdahl's Law...(exposing parallelism is
important!)

« Already have everything we need to parallelize the partition...

11707720146

23

Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot

C.

The elen ents grreater than the pivot

« This is just two packs!
— We know a pack is O(n) work, O(1og n) span
— Pack elements less than pivot into left side of aux array
— Pack elements greater than pivot into right size of aux array

— Put pivot between them and recursively sort

— With a little more cleverness, can do both packs at once but
no effect on asymptotic complexity

» With

11707720146

T(n)

span for partition, the total span for quicksortis

24

Parallel partition (not in place) (Soln)

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elaments greater than the pivot

« This is just@
— We know a pack is O(n) work, O(1og n) span

— Pack elements less than pivot into left side of aux array
— Pack elements greater than pivot into right size of aux array

— Put pivot between them and recursively sort

— With a little more cleverness, can do both packs at once but
no effect on asymptotic complexity

o
+ With O(1og n) span for partition, the total span Yor quicksort is
T(n) = n) + 1T(n/2) = O(1log?)
() =Qllog M +1T(n/2) Nlog” A

— e —

——
11/07/2016 b 25

Parallel Quicksort Example (version 2)

« Step 1: pick pivot as median of three

8

1

4

9

0

3

5

2

7

6

+ Steps 2a and 2¢ (combinable): pack less than, then pack
greater than into a second array

— Fancy parallel prefix to pull this off (not shown)

1

4

0

3

5

2

1

4

0

3

5

2

6

8

« Step 3: Two recursive sorts in parallel
— Can sort back into original array (like in mergesort)

11707720146

?{\j:&jj':’é?

26

Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case O(n 1og n)

1. Sort left half and right half 2T (/2
2. Maerge results O(m)

Just like quicksort, doing the two recursive sorts in parallel changes
the recurrence forthe Spanto T(n)= O(n) + 1T(n/2) = O(n)
'C—-——-.

* Again, Work is O(nlogn), and
+ parallelism is work/span = O(log n)
* To do better, need to parallelize the merge
— Thetrick won't use parallel prefix this time...

11707720146 T

Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

s
ol1lals8] o ‘2356?

) I
Idea: Suppose the larger subarray has m elements. In parallel:

+ Merge the first m/2 elements of the larger half with the
“appropriate” elements of the smaller half

+ Merge the second m/2 elements of the larger half with the
rest of the smaller half

11707720146 a5

Parallelizing the merge (in more detail)

Need to merge two sorted subarrays (may not have the same size)
Idea: Recursively divide subarrays in half, merge halves in parallel

A /
046\39\ 1235(7

) =

Suppose the larger subarray has m elements. In parallel:
+ Pick the median element of the larger array (here 6) in constant time
* Inthe other array, use binary search to find the first element greater
than or equal to that median (here 7)
Then, in parallel:
+ Merge half the larger array (from the median onward) with the upper
part of the shorter array
+ Merge the lower part of the larger array with the lower part of the
shorter array

11707720146 29

Example: Parallelizing the Merge

0/4(6(8[9| [1]|2]3]|5|7]

11707720146

30

1.

Example: Parallelizing the Merge

Get median of bigger half. (1) to compute middle index
J’.‘_‘__\-

11707720146

3l

1.

2

it

Example: Parallelizing the Merge

Get median of bigger half. (1) to compute middle index

Find how to split the smaller half at the same value:
O(logmn)to do binary search on the sorted small half

11707720146

32

Example: Parallelizing the Merge

Get median of bigger half: (1) to compute middle in dex

2. Find how to split the smaller half at the same value:
O(logn)to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)

117072016 33

I

Example: Parallelizing the Merge

Get median of bigger half. (1) to compute middle index

Find how to split the smaller half at the same value:
O(logmn)to do binary search on the sorted small half

Two sub-merges conceptmally splits output array: O(1)

Do two submerges in parallel

11707720146

34

Example: Parallelizing the Merge

04|68 9 11213 |5|7

meroe meroee
0|4 (12|35 68|97

o| [1]2] [4][3]5 68

merge merge merg
8

€
7]
ol [1]2] [4][3]5 B

merge merge neroe

ol[1] [2] [4]|3] [5 1 E

o[1]2[3]4]5 6 8|9

11707720146

Example: Parallelizing the Merge

04|68 9 11213 |5|7

merge merge
0(4|(1]2|3]5 6189 ||7

When we do each merge in parallel:
= we split the bigger array in half

= use binary search to split the smaller array
= And in base case we do the copy

merge merge neroe

ol[1] [2] [4]|3] [5 B [z [
01|2[3]45 6N 8|9

11707720146 36

Parallel Merge Pseudocode

Mergelarr(], left,, lefty, right,, right,, out[], out,, out,)
int leftSize = left, — left,
int rightsize = rights —righty
fAssert out, — outy = leftSize + rightSize

e will assume leftSize = rightSize without loss of generality

if {leftSize + rightSize < CUTORF)
sequential merge and copy into outfout?. . out?]

int mid = {lefty — left,)2
binarySearch arr[right1. right2] to find | such that

arr(j] = arr{mid] = arrj+1]

Mergelarr], left,, mid, right,,], out], outy, out,+mid+j)
Merge(arr[], mid+1, lefty, j+1, right,, out[], out, +mid+j+1, out,)

11707720146 37

Analysis

* Segquential mergesort: \
> T(n =2T(nf2) + O(n) which isw
+ Doing the two recursive calls in parallel but a sequential merge:

Work: same as sequential

Span: T(m)=1T(n/260n)) which /

« Parallel merge makes work and span harderto compute...
— Each merge step does an extra O(1log n) binary search to find
how to split the smaller subarray
— To merge n elements total, do two smaller merges of possibly
different sizes
— But worst-case splitis (3/4)nand (1/4)n

* Happens when the two subarrays are of the same size (n/2)
and the “smaller” subarray splits into two pieces ofthe most
uneven sizes possible: one of size n/2, one of size 0

"|EIFQEF" "smaller”

110772016 04|68 11235 33

Analysis continued

For just a parall ¢ Jof n elements:
« Workis Tin) = M4} + T ni4) + O(1log n) which is O{ n)
« Spanis T(n) = w} + O{log n), which is\O(1o [
* (neither bound is immediately obvious, but “trust me"}

So for mlth parallel merge overall

« Workis T(n)=2T(n/2) + O(n), which isO(n 1log n
- Spanis T(n) = 1T(n/2) + D Which is
So parallelism (work / span) is O(n/ 1og? n)

— Not quite as good as quicksort's O(n/ log n)

« But (unlike Quicksort) this is a worst-case guarantee
— And as always this is justthe asymptotic result

———

11707720146 39

