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Qutline

Done:
— Simple ways to use parallelism for counting, summing, finding
— Analysis of running time and implications of Amdahl’'s Law

Now: Clever ways to parallelize more than is intuitively possible
— Parallel prefix:
+ This “key trick” typically underlies surprising parallelization
« Enables other things like packs (aka filters)
— Parallel sorting: quicksort (not in place) and mergesort
+ Easy to get a little parallelism
+ With cleverness can get a lot
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The prefix-sum problem

Given int[] input, produce int[] output where:
output[i]==inEut[0]+input[1]+m+input[i]

input Ijﬂbmm
output 36 y 1) ) )

Sequential can be a CSE142 exam problem:
int[] prefix sum(int[] 1nput}{
int][] mutput = n 1nt input.length] ;

output[l = 1nput[0],
. . o gth, i++)

nput[l],

Does not seem parallelizable
— Work: O(n), Span: O(n)
— This algorithm is sequential, but a different algorithm has

Work: O(n), Span: O(1og n)
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Parallel prefix-sum

* The parallel-prefix algorithm does two passes
— Each pass has O(n) work and O(1log n) span

— Soin total there is O(n) work and O(log n) span
— So like with array summing, parallelism is n/logn
+ An exponential speedup

+ First pass builds a tree bottom-up: the “up” pass

+ Second pass traverses the tree top-down: the “down” pass
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Local bragging

Historical note:
— Original algorithm due to R. Ladner and M. Fischer at UWin 1977
— Richard Ladner joined the UW faculty in 1971 and hasn't left

B9,

1968'.; 19737 recent
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Parallel Prefix: The Up Pass

We build want to build a binary tree where
* Root has sum ofthe range [x,y)
« If a node has sum of [lo hi) and hi=lo,
— Left child has sum of [lo,middle)
— Right child has sum of [middle,hi)
— Aleaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the free as we will
need it for the down pass

+ We do not need an actual linked structure
+ We could use an array as we did with heaps

Analysis of first step: Work = OCN ) Span= () ([ua N)
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The algorithm, part 1

Specifically... .

1. Propagate ‘sum’ up: Build a binary tree where
— Roothassum of input[0]..input[n-1]
— Eachnode has sum of input[lo]..input[hi-1]
*  Build up from leaves; parent.sum=left.sum+right.sum
— Aleafs sumisjustit's value; input[i]

This is an easy fork-join computation: combine results by actually
building a binary tree with all the sums of ranges

— Tree built bottom-up in parallel

— Could be more clever; ex. Use an array as tree representation
like we did for heaps

Analysis of first step: O(n) work, O(1leog n) span
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The (completely non-ob vious) idea:

:!:]1} an 1111+tml pass t:} gather range 0.8
information, enabling us to do a sum
second pass to get the answer fromleft
II;“\S:.WP !lfg:\]tl}mi range 0.4 range 4.3
the ‘sum’ for each sum sum
recursive block fromleft fromleft
range 0.2 range 2.4 range 4.6 range 6.8
"-————> sum [0 sum sum sum
fromleft fromleft fromleft fromleft
rot1 |(jr1.2 ||r23 |(|r34 ||[r45 |[r 56 ||[r67 ||r7.8
—> s | :
f f f f f f f f
input 6 4 16 10 16 14 2 8
output
8
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First pas

For each node, get

the sum of all values

in its range;:

propagate sum up

from leaves

Will work

like parallel
sum, but
recording
intermediate
information

input

output
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range 0.8
76
sum
/ frﬂmleft@\
range 04 range 4.8
sum 36 sum ~_40
fromleft fromieft )
range @ range 2.4 range 4.6 range 6.3
sum m \[ sum 26 sum 30 sum
\ fromleft O fromleft iOS fromleft > (. | | fromleft
r 0.1 r1.2 ||ir 2.3 ||r 34 |(|r 4.5 r 56 ([r 6.7 ||r 7.8
S 6 4 S 16 (| 10 (|is 16 ||s 14 2 s 8
f o f f f f f f f
| 6 4 16 | 10 | 16 | 14 2 8
\
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The algorithm, part 2

2. Propagate ‘fromleft’ down:
— Root given a fromLeft of 0
— Nodetakesits fromLeft value and
+ Passes its left child the same fromLeft

+ Passesits right child its fromLeft plus its left child's sum
(as stored in part 1)

— Atthe leaf for array position i,
coutput[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

— Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span
Analysis of second step:

Total for algorithm:
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The algorithm, part 2

2. Propagate ‘fromleft’ down:
— Root given a fromLeft of 0
— Nodetakesits fromLeft value and
+ Passes its left child the same fromLeft

+ Passesits right child its fromLeft plus its left child's sum
(as stored in part 1)

— Atthe leaf for array position i,
coutput[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

— Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span
Analysis of second step: O(n) work, O(1og n) span

Total for algorithm: O(n) work, O(log n) span
1107720164 11



Second pass range 0.8
sum 76
. fromleft 0
Using ‘sum’, get the
sum of everything to
the left of this range range 0.4 range 4.8
(call it “fromlefc)y; | Sum 36 sum 40
1}i'01}agate {lm;’n f;'ﬂm fromleft 0 fromleft 36
root / \ / \
range 0.2 range 2.4 range 4.6 range 6.3
sum 10 sum 26 sum 30 sum 10
fromleft 0 fromleft 10 fromleft 36 fromleft 66
r 0.1 r1.2 |(|r 23 (|r 34 ([r45 ||r 56 |r67 ||r7.8
6 (/s 4 [|s 16 [|s 10 ||s 16 ||s 14 ||s 2 |[|s 8
f 0 (|[f 6 (|f 10 [|[f 26 |[f 36 ||[f 52 ||[f 66 ||f 68
input 6 4 16 10 16 14 2 8
output 6 10 26 36 52 66 68 76
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Sequential cut-off

Adding a sequential cut-offisn't too bad:

+ Step One: Propagating Up the sums:

— Have aleaf node just hold the sum of a range of values
instead of just one array value (Sequentially compute sum
for that range)

— The tree itself will be shallower

+ Step Two: Propagating Down the fromLefts:

— Have leaf compute prefix sum sequentially over its [lo,hi):
output[lo] = fromLeft + input[lo];
for(i=lo+l; 1 < hi; 1++)

output[i] = output[i-1] + input[i]
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Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattemn,
prefix-sum illustrates a pattern that arises in many, many problems

«  Minimum, maximum of all elements to the left of 1

—

* Is there an element to the left of 1 satisfying some property?
« Count ofelements to the left of 1 satisfying some property

— This last one is perfect for an efficient parallel pack...
— Perfect for building on top of the “parallel prefix trick”
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Pack (think “Fifter’)

[Mon-standard terminology]

Given an array input, produce an array output containing anly
elements such that £{element) is true

- . - f: H'I_ _— —_ F -

[T S ' |
Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
£f: “is element > 107

output [17, 11, 13, 1%, 24]

= —

Farallelizable?
— Determining whether an element belongs in the output is easy

— But determining where an element belongs in the output is
hard;, seems to depend on previous results... .

T out | A ’B 210
] '\\- ‘ll - )
™ -

C'«:*"pﬂ f_":q/ J =k ”ﬂ(m

J
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In this example

Parallel Pack = Filter =

element = 10

parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits (., o, o, o, 1,0, 1, 1, 0, 1]

2. Parallelprefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL(1=0; 1 < input.length; 1i++){
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In this example

Parallel Pack = e
parallel map + llel prefix + el map

1. Parallef)map to compute a bit-vector for true elements:
input | [17, 4, 6, a, 0, 24]

bits @oo 1600 @

2. Farallel-preflx sum on the bII-VECIDr

bitsum @

3. Parallel map to pmdu
output [1'? @@ 24]
mutput = ze bitsum[n-1]

FORALL ( 1—0 1 { 1nput length; i++){
if ( blts[l]
output[bltsum[l] 1] = input[i];
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Pack comments

*

First two steps can be combined into one pass
— Just using a different base case for the prefix sum
— No effect on asymptotic complexity

*

Can also combine third step into the down pass of the prefix sum
— Again no effect on asymptotic complexity

*

Analysis: O(n) work, O(log n) span
— 2 or 3 passes, but 3 is a constant ©

*

Parallelized packs will help us parallelize quicksort...
—
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Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time O(n 1og n)

Best / expected case work
1. Pick a pivot element 0O(1)
2. Partition all the data into: O(n)
A. The elaments less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C 2T (n/2)

Recurrence (assuming a good pivot):
T(O)=T(1)=1 n
T=0ln) ¥2T (u 'z?)

Run-time: O(nlogn})
“'-.___________/

How should we parallelize this?
110772016 19



Review. Really common recurrences

Should know how to solve recurrences but also recognize some
really common ones:

T(n=01)+ T(n-1) linear
Tim=0(1)+2T(nl2) linear
T(ny=0O(1)+ T(n/2) logarithmic
TmM=01)+2T(n-1) exponential
T(n=0m+ T(n-1) quadratic
CTm=0m+T(n/2)  linear—,
T(n)=0O(n)+ 2T(nl2) O(n logn) >

Note big-Oh can also use more than one variable
« Example: can sum all elements of an n-by-m matrix in O(nm)

11707720146
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Parallel Quicksort (version 1)

Best / expected case work
1. Pick a pivot elanent O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivet

C. The elements greater than the pivot
3. Recursively sort A and C 2T(n/2)

First: Do the two recursive calls in parallel

+ Work: O(h }-nla N —

+  Span: now recurrefige takés the form:

oo () = 0(n) + T (%
- O (W)
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Parallel Quicksort (version 1) (Soln)

Best / expected case work
1. Pick a pivot elanent O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivet

C. The elements greater than the pivot
3. Recursively sort A and C 2T(n/2)

First: Do the two recursive calls in parallel
* Work: unchanged of course, O(n log n)
+ Span: now recurrence takes the form:
T(n)=O(n)+1T(n/2) = O(n)
Span: O(n)
+ Soparallelism (i.e., work/span) is O(log n)
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Doing better

* log n) speed-up with an infinite number of processors is
okay, but a bit underwhelming

— Sort 10? elements 30 times faster

+ Google searches strongly suggest quicksort cannot do better
because the partition cannot be parallelized

— The Internet has been known to be wrong ©
— But we need auxiliary storage (no longer in place)

— In practice, constant factors may make it not worth it, but
remember Amdahl's Law...(exposing parallelism is
important!)

« Already have everything we need to parallelize the partition...

11707720146
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Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot

C.

The elen ents grreater than the pivot

« This is just two packs!
— We know a pack is O(n) work, O(1og n) span
— Pack elements less than pivot into left side of aux array
— Pack elements greater than pivot into right size of aux array

— Put pivot between them and recursively sort

— With a little more cleverness, can do both packs at once but
no effect on asymptotic complexity

»  With

11707720146
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span for partition, the total span for quicksortis
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Parallel partition (not in place) (Soln)

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elaments greater than the pivot

« This is just@
— We know a pack is O(n) work, O(1og n) span

— Pack elements less than pivot into left side of aux array
— Pack elements greater than pivot into right size of aux array

— Put pivot between them and recursively sort

— With a little more cleverness, can do both packs at once but
no effect on asymptotic complexity

o
+ With O(1og n) span for partition, the total span Yor quicksort is
T(n) = n) + 1T(n/2) = O(1log? )
() =Qllog M +1T(n/2) Nlog” A

— e —

——
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Parallel Quicksort Example (version 2)

« Step 1: pick pivot as median of three

8

1

4

9

0

3

5

2

7

6

+ Steps 2a and 2¢ (combinable): pack less than, then pack
greater than into a second array

— Fancy parallel prefix to pull this off (not shown)

1

4

0

3

5

2

1

4

0

3

5

2

6

8

« Step 3: Two recursive sorts in parallel
— Can sort back into original array (like in mergesort)

11707720146
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Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case O(n 1og n)

1. Sort left half and right half 2T (/2
2. Maerge results O(m)

Just like quicksort, doing the two recursive sorts in parallel changes
the recurrence forthe Spanto T(n)= O(n) + 1T(n/2) = O(n)
'C—-——-.

* Again, Work is O(nlogn), and
+ parallelism is work/span = O(log n)
* To do better, need to parallelize the merge
— Thetrick won't use parallel prefix this time...
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Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

s
ol1lals8] o ‘2356?

) I
Idea: Suppose the larger subarray has m elements. In parallel:

+  Merge the first m/2 elements of the larger half with the
“appropriate” elements of the smaller half

+ Merge the second m/2 elements of the larger half with the
rest of the smaller half
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Parallelizing the merge (in more detail)

Need to merge two sorted subarrays (may not have the same size)
Idea: Recursively divide subarrays in half, merge halves in parallel

A /
046\39\ 1235(7

) =

Suppose the larger subarray has m elements. In parallel:
+ Pick the median element of the larger array (here 6) in constant time
* Inthe other array, use binary search to find the first element greater
than or equal to that median (here 7)
Then, in parallel:
+ Merge half the larger array (from the median onward) with the upper
part of the shorter array
+ Merge the lower part of the larger array with the lower part of the
shorter array

11707720146 29



Example: Parallelizing the Merge

0/4(6(8[9| [1]|2]3]|5|7]

11707720146
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1.

Example: Parallelizing the Merge

Get median of bigger half. (1) to compute middle index
J’.‘_‘_\_\-

11707720146
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1.

2

it

Example: Parallelizing the Merge

Get median of bigger half. (1) to compute middle index

Find how to split the smaller half at the same value:
O(logmn)to do binary search on the sorted small half

11707720146
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Example: Parallelizing the Merge

Get median of bigger half: (1) to compute middle in dex

2. Find how to split the smaller half at the same value:
O(logn)to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)
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I

Example: Parallelizing the Merge

Get median of bigger half. (1) to compute middle index

Find how to split the smaller half at the same value:
O(logmn)to do binary search on the sorted small half

Two sub-merges conceptmally splits output array: O(1)

Do two submerges in parallel

11707720146

34



Example: Parallelizing the Merge

04|68 9 11213 |5|7

meroe meroee
0|4 (12|35 68|97

o| [1]2] [4][3]5 68

merge merge merg
8

€
7]
ol [1]2] [4][3]5 B

merge merge neroe

ol[1] [2] [4]|3] [5 1 E

o[1]2[3]4]5 6 8|9
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Example: Parallelizing the Merge

04|68 9 11213 |5|7

merge merge
0(4|(1]2|3]5 6189 ||7

When we do each merge in parallel:
= we split the bigger array in half

= use binary search to split the smaller array
= And in base case we do the copy

merge merge neroe

ol[1] [2] [4]|3] [5 B [z [
01|2[3]45 6N 8|9
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Parallel Merge Pseudocode

Mergelarr(], left,, lefty, right,, right,, out[], out,, out, )
int leftSize = left, — left,
int rightsize = rights —righty
fAssert out, — outy = leftSize + rightSize

e will assume leftSize = rightSize without loss of generality

if {leftSize + rightSize < CUTORF)
sequential merge and copy into outfout?. . out?]

int mid = {lefty — left, )2
binarySearch arr[right1. right2] to find | such that

arr(j] = arr{mid] = arrj+1]

Mergelarr], left,, mid, right,, ], out], outy, out,+mid+j)
Merge(arr[], mid+1, lefty, j+1, right,, out[], out, +mid+j+1, out,)
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Analysis

* Segquential mergesort: \
> T(n =2T(nf2) + O(n)  which isw
+ Doing the two recursive calls in parallel but a sequential merge:

Work: same as sequential

Span: T(m)=1T(n/260n) ) which /

« Parallel merge makes work and span harderto compute...
— Each merge step does an extra O(1log n) binary search to find
how to split the smaller subarray
— To merge n elements total, do two smaller merges of possibly
different sizes
— But worst-case splitis (3/4)nand (1/4)n

* Happens when the two subarrays are of the same size (n/2)
and the “smaller” subarray splits into two pieces ofthe most
uneven sizes possible: one of size n/2, one of size 0

"|EIFQEF" "smaller”
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Analysis continued

For just a parall ¢ Jof n elements:
« Workis Tin) = M4} + T ni4) + O(1log n) which is O{ n)
« Spanis T(n) = w} + O{log n), which is\O(1o [
* (neither bound is immediately obvious, but “trust me"}

So for mlth parallel merge overall

« Workis T(n)=2T(n/2) + O(n), which isO(n 1log n
- Spanis T(n) = 1T(n/2) + D Which is
So parallelism (work / span) is O(n/ 1og? n)

— Not quite as good as quicksort's O(n/ log n)

« But (unlike Quicksort) this is a worst-case guarantee
— And as always this is justthe asymptotic result

———
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