cse332-16au-lec15-AnalysisForkJoin-day2

CSE 332: Data Structures & Parallelism

Lecture 15: Analysis of Fork-Join Parallel
Programs

Ruth Anderson
Autumn 2016

Outline

Done:
* Howto use fork and join to write a parallel algorithm

+ Why using divide-and-conquer with lots of small tasks is best
— Combines results in parallel

« Some Java and ForkJoin Framework specifics
— More pragmatics (e.g., installation) in separate notes

Now:
« More examples of simple parallel programs
« Arrays & balanced trees support parallelism better than linked lists

« Asymptotic analysis for fork-join parallelism
« Amdahl's Law

117042016 2

What else looks like this?

Saw summing an array went from O(n) sequential to O(1og n) parallel
(assuming a lot of processors and very large n)

— Exponential speed-up in theory (n/ 1og n grows exponentially)

(T T T T T T T T T T T T T T T T T
wwwwwwwwwwwywwww

\,/ v\
“*-x,f‘" T~ T~

\\ / \\+ //
\\—\ +/

+ Anything that can use results from two halves and merge them
in O(1) time has the same property...

117042016 3

Extending Parallel Sum

* We can tweak the ‘parallel sum’ algorithm to do all kinds of things;
just specify 2 parts (usually)

— Describe how to compute the result at the ‘cut-off’
(Sum: lterate through sequentially and add them up)

— Describe how to merge results
(Sum: Just add ‘left’ and ‘right’ results)

ARV R

+
“‘“x - H‘“m_ o "“‘“m -

\\ /" x-l-//
x_\+/

117042016 4

Examples

« Parallelization (for some algorithms)

N r, , N, :! :J IJ

s r K ! X
+ h:. + -+ -+ + 4+
+= _—+ +x_f*’+

— Describe howto compute result at the ‘cut-off’

— Describe howto merge results

+ How would we do the following (assuming data is given as an array)?

Maximum or minimum element

ook wn =

117042016

Is there an element satisfying some property (e.g., istherea 17)?
Left-most element satisfying some property (e.q., first 17)
Smallest rectangle encompassing a number of points

Counts; for example, number of strings that start with a vowel
Are these elements in sorted order?

Reductions

This class of computations are called reductions
— W reduce’ a large array of data to a single item
— Produce single answer from callection wia an associative

operatar
— Examples: max, count, leftmost, rightmost, sum, product, .

. ,f/NDtE: Fecursive results don't have to be single numbers ar
II' strings. They can be arrays or objects with multiple fields.
[- Example: create a Histogram of test results from a much
[larger array of actual test results

—

ﬁfFWhile many can be parallelized due to nice properties like
| associativity of addition, some things are inherently sequential

|
' — Howwe process arr [1] may depend entirely on the result

'I of processing arr [4-1]
T2 é
,f‘ ‘ _ ;I =y

ALY 1? ¥ Sun(),

Even easier: Maps (Data Parallelism)

+ A map operates on each element of a collection independently to
create a new collection of the same size

— Mo comhbining results
— Faor arrays, this is so trivial some hardware has direct support

+ Canonical example: Vector addition

int[] wector add{int[] arrl, int[] arr?){
assert (arrl.length == arr2.length) ;
result = new int[arrl.length] ;
JEORATL{i=0; i < arrl.length; i++) {
result[i] = arrl[i] + axrxr2[i]:
}

I return result;

}

11042016

Maps in ForkdJoin Framework

c(lﬂa_ss VecAdd extends Re{
int]

int 1o, 1nt hiT—1int{[] tes;

VecAdd(int I,int h,1int[] r,int[] alrlﬁtlj a

protected i ompute () {
if (hi - %o < SEQUENTIAL CUTOFF) {

}
}

}

for (int i=lo; 1 < hi; i++)
tes[i]. = arrl[i] + arr2[i];

else { 2 D

int mid = (hi+lo)/2;

VecAdd left = new VecAdd(lo,mid,res,arrl,arr2):;

VecAdd right= new VecAdd(mid,hi,res,arrl,arr2)

left.fork(),,—

right.compute()+— "

left.join() ;-

static final ForkJoinPool POOL = new ForkJoinPool () ;
int[] add(int[] arrl, int[] arr2){
assert (arrl.length == arr2.length);
int[] ans = new int[arrl.length];
POOL.invoke (new VecAdd(0,arr.length,ans,arrl,arr2)
return ans;

11/04,/2016 g

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

— By far the two most important and common patterns
+ Two more-advanced patterns in next lecture

— Leam to recognize when an algorithm can be written in
terms of maps and reductions

— Use maps and reductions to describe (parallel) algorithms

— Programming them becomes “trivial” with a little practice
+ Exactly like sequential for-loops seem second-nature

117042016

Map vs reduce in ForkJoin framework

*

In our examples:
Reduce:
— Parallel-sum extended RecursiveTask
— Result was returned from compute()
Map:
— Class extended was RecursiveAction
— Nothing returned from compute()

— In the above code, the ‘answel’ array was passedin as a
parameter

Doesn't have to be this way
— Map can use RecursiveTask to, say, return an array

— Reduce could use RecursiveAction; depending on what you're
passing back via RecursiveTask, could store it as a class
variable and access it via ‘left’ or ‘right’ when done

*

*

*

117042016 10

Digression. MapReduce on clusters

* You may have heard of Google's “map/reduce”
— Orthe open-source version Hadoop

+ l|dea: Perform maps/reduces on data using many machines

— The system takes care of distributing the data and managing
fault tolerance

— You just write code to map one element and reduce
elements to a combined result

« Separates how to do recursive divide-and-conquer from what
computation to perform

— Old idea in higher-order functional programming transferred
to large-scale distributed computing

— Complementary approach to declarative queries for
databases

117042016 11

Trees

+ Maps and reductions work just fine on balanced trees
— Divide-and-conquer each child rather than array sub-ranges
— Correct for unbalanced trees, but won't get much speed-up

+ Example: minimum elementin an unsorted but balanced binary
tree in O(1log n) time given enough processors

+ Howto do the sequential cut-off?

— Store number-of-descendants at each node (easy to maintain)
— Or could approximate it with, e.g., AVL-tree height

117042016 12

Linked lists

« Can you parallelize maps or reduces over linked lists?
— Example: Increment all elements of a linked list

— Example: Sum all elements of a linked list
— Parallelism still beneficial for expensive per-element operations

b (L » e « f
f [
front back

* Once again, data structures matter!

+ For parallelism, balanced trees generally better than lists so that
we can get to all the data exponentially faster O(1log n) vs. O(n)

— Trees have the same flexibility as lists compared to arrays
(in terms of say inserting an item in the middle of the list)

117042016 13

Analyzing algorithms

* Howto measure efficiency?
— Want asymptotic bounds

— Want to analyze the algorithm without regard to a specific
number of processors

— The key “magic” of the ForkJoin Framework is getting
expected run-time performance asymptotically optimal for the
available number of processors

+ So we can analyze algorithms assuming this guarantee

117042016 14

Work and Span

Let Tp be the running time if there arroaessurs available

Two key measures of run-time:

» WWork: How long it would take 1 processor =T,
— Just “sequentialize” the recursive forking
— Cumulative work that all processors must complete
» Span: How long it would take infinity processors =T,
— The hypothetical ideal for parallelization
— Thisis the longest “dependence chain” in the computation
— Example: O(log n};‘aré_umming an array
* Notice in this example having > n/2 processorsis no
additional help
— Also called “critical path length” or “computational depth”

117042016 15

The DAG

+ A program execution using fork and join can be seen as a DAG
— Nodes: Pieces of work
— Edges: Source must finish before destination starts

+ A fork “ends a node” and makes
two outgoing edges
* New thread
« Continuation of current thread

* A join “ends a node” and makes
a node with two incoming edges

. * Node just ended
« Last node of thread joined on

117042016 16

Qur simple examples

» fork and join are very flexible, but divide-and-conquer maps

and reductions use them in a very basic way:
— Atree on top of an upside-down tree

L combine
results

117042016

17

Qur simple examples, in more detail

Our fork and join frequently look like this:

l," H“HEHE" divide
} base cases
combine
mﬁﬁnﬁﬁi"

results

In this context, the span (T_) is:
+The longest dependence-chain; longest ‘branch’in parallel tree’
Example: O(log n) for summing an array; we halve the data down to our
cut-off, then add back together; O(log n) steps, O(1) time for each
-Also called “critical path length” or “computational depth”

117042016 1

More interesting DAGS?

+ The DAGs are not always this simple

+ Example:
— Suppose combining two results might be expensive enough
that we want to parallelize each one

— Then each node in the inverted tree on the previous slide
would itself expand into another set of nodes for that parallel
computation

117042016 19

Connecting to performance

» Recall: T, =running time if there are P processors available

* Work = T, = sum of run-time of all nodes in the DAG
— That lonely processor does everything
— Any topological sort is a legal execution
— QOf(n) for simple maps and reductions

« Span =T_= sum ofrun-time of all nodes on the most-expensive
path in the DAG
— Note: costs are on the nodes not the edges

— Qur infinite army can do everything that is ready to be done,
but still has to wait for earlier results

— O(log n) for simple maps and reductions

117042016 20

v ey - - I| O[:} é}p_i
Definitions - o

s _EJP“,‘_"F_J'L-'.F_’ q}{

+ Speed-upon P prucessurs& T, I|.-' T
— _

A couple maore terms:

’;3-.l l..l'

+ |fspeed-upis P aswevary P, we call it perfect linear speed-up
— Perfect linear speed-up means douhling P halves running time
— Usually our goal; hard to get in practice

+ Farallelismis the maximum possible speed-up: T, I T,
— AL sgme point, adding processors won't help | —— =2 70 «

-— - -

— What that pointis depends on the span _—

L 5 Max
Faralief aigorithms Is about decreasing span without T ble
ncreasing work too much < Dee A ;
11042015))
T, = 5 Se FTH% = ;2_ D 5ec —., =1 oD Se e

Optimal Ty: Thanks ForkJoin library!

+ Sowe know T,and T butwewant T, (e.g., P=4)

* lgnoring memory-hierarchy issues (caching), Tp can't beat
; L_E_E Why nhot? s s -Pr':'f"Ft(_'l(' line2r QP{E&L,A r B

whynot? This is te bst uve cun do with
Ahe most proceRers e (4,14 PnﬁLLJEi
oT.

« So an asymptotically optimal execution would be: mske wse
Tp = O((T, /P)+
— First term dominates for smaltP, second for large P

P pres |

_Tm

+ The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal!
— Expected time because it flips coins when scheduling
— How? For an advanced course (few need to know)

— Guarantee requires a few assumptions about your code...
11/04/2016 21

Division of responsibility

* Qurjob as ForkJoin Framework users:
— Pick a good algorithm, write a program
— When run, program creates a DAG of things to do

— Make all the nodes a small-ish and approximately equal
amount of work

* The framework-writer's job:
— Assign work to available processors to avoid idling
+ Let framework-user ignore all schecduling issues
— Keep constant factors low

— Give the expected-time optimal guarantee assuming
framework-user did his/her job

T, = O((T,/P) +y

117042016 23

Examples

Tp = O((T,/P)+T,)

* In the algorithms seen so far (e.g., sum an array):
- T,=0i(n)
- T,=0(logn)

— So expect (ignoring overheads): T, = O(n/P + 1log n)

« Suppose instead:
- T,=0(n)

— So expect (ignoring overheads): T, = O(n?/P + n)

117042016

24

Amdahl’'s Law (mostly bad news)

So far: talked about a parallel program in terms of work and span

In practice, it's common that your program has:

a) parts that parallelize well:

— Such as maps/reduces over arrays and trees

b) ...and parts that don’t parallelize at all:

— Such as reading a linked list, getting input, or just doing
computations where each step needs the results of previous step

These unparallelized parts can turn out to be a big bottleneck

117042016 5

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that e parallelized

Then: T,=8+(1-5)=1
Suppose we get perfect linear Spee:':lhp on the parallel portion
Then: T, =S +(1-S)P

L~

So the overall speedup with P processors is (Amdahl's Law):
T,/T, =1/(S +(1-S)/P)

And the parallelism (infinite processors) is:
T,/T, =1/8S

117042016

26

Amdahl's Law Example
Suppose: T,=5+(1-8)=1 (akatotal program execution time)
T,=13+23=1
T,=33 sec +67 sec=1

A —

Time on P processors: T, =5 +(1-S)IP

S0 To=33 sec + (67 sec)lP N 1
T,=33sec+ (67 sec)3S 22 + 20 = S3sec

'111. 33 & 10 = 473 sec -
d'_::,jt = 3% + h_\j - ﬂ_ﬂf_ﬂ,_ £ we could 34'5‘ “]“ s,
T, = 3% +0 T 33sec 7Y peortfieal.
s T I
«%}ﬂf—ﬂluf-f 1 - 129 = - = 3 spﬁdqp

%};“E]fsm = T, |0 ~ 4
- — = % SP{*{ L&P
(N‘k Bx% Possible SpH ‘1”‘[‘)]

1
i

Why such bad nhews?

T,/Tp =1/(S +(1-S)/P) T,/T, =1/8

+ Suppose 33% of a program is sequential
— Then a billion processors won't give a speedup over 3!

* No matter how many processors you use, your speedup is
bhounded by the sequential portion of the program.

117042016

28

The future and Amdahl!’s Law

Speedup: T,/T, =1/(S +(1-S)/P)
Max Parallelism: T,/T,=1/S

« Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup

— Now suppose in 12 years, clock speed is the same but you
get 256 processors instead of 1

— What portion of the program must be parallelizable to get
100x speedup?

117042016 20

The future and Amdahl!’s Law

Speedup: T,/T, =1/(S +(1-S)/P)
Max Parallelism: T,/T,=1/S

+ Suppose you miss the good old days (1980-2003) where 1Z2ish years
was long enough to get 100x speedup

— Now suppose in 12 years, clock speed is the same but you get 256
processors instead of 1

— What portion of the program must be parallelizable to get 100x
speedup?

For 256 processors to get at least 100x speedup, we need
100 <1/7(S +(1-S)/256)
Which means S < .0061 (i.e., 99.4% must be parallelizable)

117042016 30

Plots you have to see

1. Assume 256 processors
— X-axis: sequential portion $, ranging from .01 to .25
— y-axis: speedup T,/ Tp (will go down as Sincreases)

2. Assume S =.01or .1 or .25 (three separate lines)
— Xx-axis: number of processors P, ranging from 2 to 32
— y-axis: speedup T,/ Tp (will go up as P increases)
Deorthis-as-ahomework-problem! 'Twa this oat ,(
— Chance to use a spreadsheet or other graphing program
— Compare against your intuition
— A picture is worth 1000 words, especially if you made it

117042016

3l

All 1s not lost

Amdahl's Law 15 a bumm er!
— Unparallelized pars become a bottleneck very quickly
— Butit doesn't mean additional processors are worthless

+ We can find new parallel algonthms
— Some things that seem entirely sequential turn out to be parallelizable
— Eg. How canwe parallelize the following?
+ Take an array of numbers, return the ‘running sum’ amray:

input 6 4 16 10 16 14 2 8

output 6 10 26 36 52 66 68 76

— Al a glance, not sure; we'll explore this shortly
+ We can also change the problem we're solving or do new things
— Example: Video games use tons of parallel processors
+ They are not rendering 10-year-old graphics faster

+ They are rendenng richer environments and more beautiful {temible?)
monsters

117042016 32

Moore and A

* Moore’s “Law’” is an observation about the progress of the
semiconductorindustry

— Transistor density doubles roughly every 18 months

+ Amdahl's Law is a mathematical theorem
— Diminishing returns of adding more processors

* Both are incredibly important in designing computer systems

117042016 33

