cse332-16au-lec14-IntroForkJoin-day2

P

CSE 332: Data Structures & Parallelism

Lecture 14: Introduction to Multithreading &
Fork-Join Parallelism

Ruth Anderson
Autumn 2016

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming — everything part of one sequence

Removing this assumption creates major challenges & opportunities

— Programming: Divide work among threads of execution and
coordinate (synchronize) among them

— Algorithms: How can parallel activity provide speed-up
(more throughput: work done per unit time)

—q_I_Jata structures: May need to support concurrent access
(multiple threads operating on data atthe same time)

1172/2014 2

A simplified view of history

Writing correct and efficient multithreaded code is often much more
difficult than for single-threaded (i.e., sequential) code

— Especially in common languages like Java and C
— So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially
faster at running sequential programs

— About twice as fast every couple years

But nobody knows how to continue this
— Increasing clock rate generates too much heat
— Relative cost of memory access is too high

— But we can keep making “wires exponentially smaller”
(Moore's “Law"), so put multiple pracwthe same
chip (*multicore”)

1172/2014 3

What to do with multiple processors?

+ Next computer you buy will likely have 4 processors
— Wait a few years and it will be 8, 16, 32, ...
— The chip companies have decided to do this (not a “law”)

« What can you do with them?

— /Run multiple totally different programs at the same time
« Already do that? Yes, but with time-slicing

— Do multiple things at once in one program

« Our focus — more difficult

* Requires rethinking everything from asymptotic

complexity to how to implement data-structure operations

1172/2014 4

Parallelism vs. Concurrency

Note: Terms not yet standard but the perspective is essential
— Many programmers confuse these concepts

Parallelism: Concurrency:
Use extra resources to Correctly and efficiently manage
solve a problem faster access to shared resources
work reqfesrs
resources resource

There is some connection:
— Common to use threads for both

— If parallel computations need access to shared resources,
then the concurrency needs to be managed

1172/2014 5

An analogy

CS1 idea: A program is like a recipe for a cook
— One cook who does one thing at a time! (Sequential)

Parallelism: (Let's get the job done faster!)
— Have lots of potatoes to slice?
— Hire helpers, hand out potatoes and knives
— But too many chefs and you spend all your time coordinating

Concurrency: (We need to manage a shared resource)
— Lots of cooks making different things, but only 4 stove burners

— Want to allow access to all 4 burners, but not cause spills or
incorrect burner settings

1172/2014 fi

Parallelism Example

Parallelism: Use extra computational resources to solve a problem
faster (increasing throughput via simultaneous execution)

Pseudocode (not Java yet) for array sum:
— No such ‘FORALL’ construct, but we’'ll see something similar
— Bad style, but with 4 processors may get roughly 4x speedup

int sum(int[] arr){
res = new int[4];
'EJj71en = arr.length;
ORALL(i=0; i < 4; i++) { //parallel iterations
res[i] = sumRange(arr,i*len/4, (i+l1l)*1len/4);

(l return res[0]+res[l]+res[2]+res[3]:
) i
int sumRange (int[] arr, int lo, int hi) {
result = 0;
for(j=lo; jJ < hi; j++)
result += arr[j];
return result;

}

1172/2014 7

Concurrency Example

Concurrency: Correctly and efficiently manage access to shared
resources (from multiple possibly-simultaneous clients)
Ex: Multiple threads accessing 3 hash-table, but not getting ineach DthEI’S'WE‘_-,-"S
Pseudocode (not Java)for a shared chaining hashtable
— Essential correctness issue is preventing bad interleavings

— Essential performance issue not preventing good concurrency
« ne 'solution’ to preventing bad inter-leavings is to do it all sequentially

class Hashtable<K,V> {

.01d 1hSELt{K key V value) {

re- enable access to table[bucket]

}
V lookup (K key) {

(similar to insert, but can allow concurrent
lookups to same bucket)

}

1172/2014 8

Wwﬁh Threads

The model we will assume is shared memory with explicit threads

Old story: A running program has
— One program counter (current statement executing)
— One call stack (with each stack frame holding local variables)
— Objects in the heap created by memory allocation (i.e., new)
+ (nothing to do with data structure called a heap)
— Static fields

New story:
— A set of threads, each with its own program counter & call stack
« No access to another thread's local variables
— Threads can (implicitly) share static fields / objects

* To communicate, write values to some shared location that

another thread reads from
11522014 0

Old Story : one call stack, one pc

: . Heap for all objects
Call stack with local variables and static fields

*pc determines current statement
*local variables are numbers/null /
or heap references

/

c=0x..

-

51372013 10

New Story: Shared memory with Threads

Heap for all objects
and static fields, shared

Threads, each with own unshared by all threads

call stack and “program counter”
/ |
c=0x..

=) /

c=0x.. c=0x..

51372013 11

Other models

We will focus on shared memory, but you should know several
other models exist and have their own advantages

. ?Ew: Each thread has its own collection of objects.
ommunication is via explicitly sending/receiving messages
— Cooks working in separate kitchens, mail around ingredients
—_— T T
* Dataflow: Programmers write programs in terms of a DAG.
A node executes after all of its predecessors in the graph

— Cooks wait to be handed results of previous steps

« Data parallelism: Have primitives for things like “apply function
1o every element of an array in parallel”

avvaY) ,_f}(/%/ C
A =r+C

1172/2014 12

Our Needs

To write a shared-memory parallel program, need new primitives
from a programming language or library

« Ways to create and run mulkiple things at once
— Let's call these things threads

* Ways for threads to share memory
— Often just have threads with references to the same objects

« Ways for threads to coordinate (a.k.a. synchronize)
— For now, a way for one thread to wait for another to finish

— Other primitives when we study concurrency

1172/2014 13

Java basics

First learn some basics built into Java via java.lang.Thread
— Then a better library for parallel programming

To get a new thread running:
1. Define a subclass ¢ of java.lang.Thread, overriding £un
2. Create an object of class C IR
3. Call that object’'s start method
» start sets off a new thread, using run as its “main”

What if we instead called the run method of c?
— This would just be a normal method call, in the current thread

Let's see how to share memory and coordinate via an example...

1172/2014 14

Parallelism idea

+ Example: Sum elements of a large array
+ |dea: Have 4 threads simultaneously sum 1/4 of the array
— Warning: This is an inferior first approach

NENERERNNNRERNNN RN ERERNNNRRRNNRRRRNARRRRANERRY
l_| J\ '_.ll_'_ll_'_l

ans0 ansl ans2 ans3

— T,

ans

— Create 4 thread objects, each given a portion of the work
— Call start () on each thread object to actually run it in parallel

— Wait for threads to finish using join ()
— Add together their 4 answers for the final result

1172/2014 15

First attempt, part 1 I

class SumThread extends java.lang.Thread ({

nt lo; // fields, passed to constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

SumThread(int[] a, int 1, int h) {
lo=1l; hi=h; arr=a;
}

public void run (//override must have this type
for(int i=lo; 1 < hi; 1i++)
ans += arr|[i]:
}o o~

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads
117242016 16

First attempt, continued (wron
P (wrong)

class extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. } // override

U

int sum(int[] arxr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4]:
for (int i=0; i < 4; i++) // do parallel computations

ts[i] = new SumThread(arr,i*len/4, (i+1l)*len/4);

for (int i=0; i 1 // combine results

ans += ts[i] .ans;
return ans;

1172/2014 17

Second attempt (still wrong)

class SumThread extends java.lang.Thread ({

int lo, int hi, int[] arr; // fields to know what to do

int ans = 0; // result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. } // override

}

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;

SumThread[] ts = new SumThread[4]:
for(int i=0; i < 4: i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+1l)*len/4);

};ks[i]+start{}; // start not run

for(int 1=0; 1 < 4;
ans += ts[i] .ans;

T T

S,

i++) // combine results

1172/2014 15

Third attempt (correct in spirit)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int 1, int h) { .. }

public void run(){ .. } // override
}
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread = new SumThread[4]:
for (int ' i++){// do parallel computations
;7ts[i] =—1re . read(arr,i*len/4, (i+1l)*len/4) ;

ts[i] .start () ;

4; i++) { // combine results
/ wait for helper to finish!

return ans;

1172/2014 19

Join: Qur “wait” method for Threads

*

The Thread class defines various methods you could not
implement on your own
— For example: start, which calls runin a new thread

* The join method is valuable for coordinating this kind of
computation

— Caller blocks until/unless the receiver is done executing
(meaning the call to run finishes)

— Else we would have a race condition on ts[i] .ans

* This style of parallel programming is called “fork/join”

« Java detail: code has 1 compile error because join may throw
java.lang.InterruptedException

— In basic parallel code, should be fine to catch-and-exit

1172/2014 20

Shared memory?

* Fork-join programs (thankfully) do not require much focus on
sharing memory among threads

« Butin languages like Java, there is memory being shared.
In our example:

— lo, hi, arr fields written by “main” thread, read by helper
thread
— ans field written by helper thread, read by “main” thread

* When using shared memory, you must avoid race conditions
— While studying parallelism, we’ll stick with join

— With concurrency, we will learn other ways to synchronize

1172/2014

a1

A better approach
Several reasons why this is a pooar parallel algarithm

1. Wantcode to be reusahble and efficient across platforms

— "Forward-portable” as core count grows
— Soatthe veryleast, parametenze by the number of threads

int sum{int[] arr, int numTs) {
int ans = 0;
SumThread[] ts = new SumThread[numT=] ;
for(int i=0; i < numT=; i++){
t=[i] = new SuﬂThread(arr,(i*arr.length]fnuMTs,
((i+1}*arr.length}fnuﬂTs};
ts[i] .staxrt() ;
}
for{int i=0; i < numTs; i++) {
ts[i] .join(} ;
ans += ts[i] .ans:;

X
return ans:;
H | i
C,ﬁ:lf rf{‘ {\ljt:-uL VN » Uy [‘f}a}t O 2 ‘qha,plmﬁ?_, waL\ (g '1)1’,;,;{5 .
FFTr_:nD '193,5{ jnu« ;ﬁtrta?a [\‘.«.rfdtd the warle ATO ‘J fnﬁ c= -
) D O O — 4 jreces oF warke
g Shovs

v

O O 0O © S 97."'.—&.1.@ rdle pro-

=
o

A Beftter Approach
2. Want to use (only) processors “available to you now”

— Not used by other programs or threads in your program
+ Maybe caller is also using parallelism
« Available cores can change even while your threads run

— Ifyou have 3 processors available and using 3 threads would
take time X, then creating 4 threads would take time 1.5x

« Example: 12 units of work, 3 processors
— Work divided into 3 parts will take 4 units of time
— Work divided into 4 parts will take 3*2 units of time

// numThreads == numProcessors is bad
// 1f some are needed for other things
int sum(int[] arr, int numTs) {

-

1172/2014 23

]—F l hawe 2-‘{ un.t s a-{: Wwirk and 3w w1 3 ”3¢|n'|mt
LJI'Hr\ ""l anti cowld C.ffa-{"{, L‘I chtale s a“F WO rle -

E: J JD%QWH

O é—({ Pr‘”ﬁ‘if_s______—-
What f | om ':""l'a 9"0*3»*\ 2 of Hage Cores but

hove a"l‘ffad divided 1nh "f cdaun s o wark 7_"_
.f\.'hj BCHHHL‘-E

LSOOl [T
[”J g ks

[) | 3 0 0O

&'
Eﬂxlﬂt of > unt ot uhﬂr_:j_g‘c*:“"dl

A Better Approach

d. Though unlikely for sum, in general subproblems may take
significantly different amounts of time

- xample: Apply method £ to every array element, but mayhe
£ is much slower for some data items

+ Example: |5 a large integer prirme?

— Ifwe create 4 threads and all the slow data is processed by 1
af them, we won't get nearly a 4x speedup

+ Example of a load imbalance o 19 vl ¢
, tery ! Lo ™
Y¥ -)
s 1 | 7T\
LH,IWE) \
. ey s [iePrimel) S Phamel s Pt '
111212016 s Primel) rr' d e Dee "
- |0 sec | :]‘?’E‘(Lll = Pe| = ‘j S ¢ .
- , \ a] ke watia
I\‘---.___.z'/f I“;Laul:iﬂl."-.w his H’““?J
A fwish R

Yamt £
Ln ?_f.c}t l'."“"ll""a_l__li__

A Better Approach

The counterintuitive (7) solution to all these problems is to cut up our
problem into many pieces, far more than the number of processors

— But this will require changing our algorithm
— And for constant-factor reasons, abandoning Java's threads

NENERERENNRERNNN RN ERERNNNRRRNNRRRRNARRRRANEERY
\ Jl —_— |_'_'

anso\aiﬂﬁ—s{’/%lansﬂ

Forward-portable: Lots of helpers each doing a small piece
Processors available: Hand out “work chunks™ as you go

« If 3 processors available and have 100 threads, then ignoring
constant-factor overheads, extra time is < 3%

Load imbalance: No problem if slow thread scheduled early enough
« Variation probably small anyway if pieces of work are small
117242016 25

Naive algorithm is poor
Suppose we create 1 threadto process every 1000 elements

int sum(int[] arxr){

int numThreads = arr.length / 1000;
SumThread[] ts = new SumThread|[numThreads] ;

}

Then the “combining of results” part ofthe code will have
arr.length / 1000 additions

« Linearin size of array (with constant factor 1/1000)
+ Previous we had only 4 pieces (©(1) to combine)
* Inthe extreme, suppose we create one thread per element - If
we use a for loop to combine the results, we have N iterations

* In either case we get a ©(N) algorithm with the combining of

results as the bottleneck....
11522014 i

pnoo

hie doi '~ R .F
’T.};Eﬁe’&ﬁc “4 portim o

yaRlll i o(r)
G
4 loops lile oa

-S‘ltdﬂ‘_ laf e L{S-LJ o
cvciﬁtisf:fr thetad S
ot tm':;m-'- H."Suﬂsf

b o O 6
Jizng | N) Y/
0013h>
o/

Cﬁb‘l.'.ﬂ-l '
TReesult<

Rewnrsiue 'ii:-ﬁ*'nl.{nn Ae.mrusi-‘i?m
CAs on shide 29 73%)

0
A better idea. Divide and Conquer! ~ _
0
1) Divide problem into pieces recursively: /
1 W \ J/\ﬁ

— Start with full problem at root
— Halve and make new thread until size is at some cutoff
2) Combine answers in pairs as we return from recursion (see diagram)

TR T T

~— ~—
~. \\ /
—_— .,

This will start small, and ‘grow’ threads to fit the problem
This is straightforward to implement using divide-and-conquer

— Parallelism for the recursive calls
11522014 N

Remember Mergesort?

\ sl2|9|4|s5[3]1]6
Divide — —_—
82 9 4 5316
Divide / \ / \
iige | 82 9 4 53 16
1VI{Le
/\ 2N \ N\
1 element 8 2 9 4 5 3 1 6
o o N / AN
Merge "¢ 4 9 3 5 1 6
Merge \./ \./
2 4 8 9 1356
Merge 1234568079

51372013

Code looks something like this (still using Java Threads)

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // fields to know what to do
Ent ans = 0; // result
umThread(int[] a, int 1, int h) { .. }
public void run(){ // override
if(hi - lo < SEQUENTIAL CUTOFF)
for (int i=lo; 1 < hi; i++)
ans += arr|[i]:
else {
SumThread left = new SumThread(arr,lo, (hi+lo)/2);
SumThread right= new SumThread(arr, (hi+le)/2,hi);
left.start ()
right.start() ;
left.join(),; // don’'t move this up a line - why?
right.join(),;, —— —_—
——>ans = left.ans + right.ans;

}
}
}

int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);
t.run() ;
return t.ans;

} 1172/2014

Divide-and-conquer really works

+ The key is divide-and-conquer parallelizes the result-combining

— [fyou have enough processors, total time is height of the tree:
O(log n) (optimal, exponentially faster than sequential O(n))

— Next lecture: study reality of P << n processors

« Will write all our parallel algorithms in this style
— But using a special library engineered for this style
+ Takes care of scheduling the computation well
— Often relies on operations being associative (like +)

AT AA R A

““a_'_f’ ““m+f“' “‘x —
\\4_/ \\ ,—/
__\4_/

1172/2014 30

Thread: sum range [0, 10) 'Recursive problem decomposition

Thread: sum range [0,3) Example: sumning

Thread: sum range [0,2) an array with 10 elemnents
Thread: sum range [0.1) (retum ar[0]) {too small to actually want to
Thread: sum range [1.2) (retum am[1]) use parallelism)
add results from two helper threads

Thread: sum range [2.5) T he algorithm produces the
Thread: sum range [2,3) {retum am[2]) following tree of recursion,
Thread: sum range [3,5) wlere the range [ij)

Thread: sum range [3.4) (retum arr[3]) includes i and excludes j
Thread: sum range [4,5) (retum arr[4])
add results from two helper threads
add results from two helper threads
adi results from two helper threads
Thread: sum range [5, 10)
Thread: sum range [5,7)
Thread: sum range [5,6) {retum am[5])
Thread: sum range [6,7) {retum am[6])
add results from two helper threads
Thread: sum range [7,10)
Thread: sum range [7,8) {retum a[7])
Thread: sum range [8,10)
Thread: sum range [8.9) (retum ar[3])
Thread: sum range [9.10) {return arr[9])
add results from two helper threads
add results from two helper threads
add results from two helper threads

51372013 3l

Being realistic

* In theory, you can divide down to single elements, do all your
result-combining in parallel and get optimal speedup

— Total time O(n/numProcessors + log n)

« In practice, creating all those threads and communicating
swamps the savings, so do two things to help:

1. Use a sequential cutoff, typically around 500-1000

+ Eliminates almost allthe recursive thread creation
(bottom levels of tree)

« Exactly like quicksort switching to insertion sort for small
subproblems, but more important here

Do not create two recursive threads:; create one thread and
do the other piece of work “yourself”

+ Cuts the number of threads created by another 2x

1172/2014 32

Half the threads! order of last 4 lines

Is critical — why?

// wasteful: don’t // better: do!!
SumThread left .. SumThread left = ..
SumThread right SumThread right = .

: left+start{} : Note: run_.".S‘En'
} o r 1gh £ .run { } - horna!l unction calif
r * r

ExecUfion wan't
confinue Lntifwe
are done with run

left.start ()
right.start(

left.join() ; left.join{() ;
right.join () ; // no right.join needed
ans=left.ans+right.ans; ans=left.ans+right.ans;

+ Ifa language had built-in support for fork-join parallelism, |
would expect this hand-optimization to be unnecessary

« Butthe library we are using expects you to do it yourself
— And the difference is surprisingly substantial
* Again, no difference in theory

51372013 33

(F“F‘ P¢L'7|ur¢_ uff{d{ down =e se€ Uhat 4 |ue1(> lilee 2¢ thresds brf_)
. . crested |
Fewer threads pictorially

ENENEENEEEEENENNEENEEERERRERRNNNNRENRERRNNEENEED
ARAsAcAcees
2 hew 3\+/9 10~ —11 12\+f—f—13 14~,-—15

threads 4 s 5 \ /,,7

at each step
(and only leafthreads

do much work)
Total = 15 threads

T T

1 new 5 \+/_§_ 6~y—2 7\+/4 8L
thread 3 T~ _— 2 4\+/L

at each step
Total = 8 threads 1
117242016 34

That library, finally

« Even with all this care, Java's threads are too “heavyweight”
— Constant factors, especially space overhead
— Creating 20,000 Java threads just a bad idea &

* The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism

— In the Java 7 standard libraries
+ (Also available for Java 6 as a downloaded .jar file)
— Section will focus on pragmatics/logistics
— Similar libraries available for other languages
« C/C++:; Cilk (inventors), Intel’s Thread Building Blocks
« C#: Task Parallel Library
— Library's implementation is a fascinating but advanced topic
117242016 35

Different terms, same basic idea

To use the ForkJoin Framework:
« Alittle standard set-up code (e.gd., create a ForkJoinPool)

Java Threads: ForkJoin Framework:
Don’t subclass Thread Do subclass RecursiveTask<v>
Don't override run Do override compute
Do not use an ans field Do return a v from compute
Don’t call start Do call fork
Don't just call join Do call join (which returns answer)

Don't call run to hand-optimize Do call compute to hand-optimize
Don't have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):
“A Beginner’s Introduction to the ForkJoin Framework™
117242016 36

Forkﬁ n Framework Version: (missing imports)

class ask extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumTask (int[] a, int 1, int h) { .. } w
protected Integer compute(){// return answer riﬁﬁ

if(hi - lo < SEQUENTIAL CU o
int ans = 6-— ocal var, not a field

for(int i=lo; 1 < h1, i)
E.;; Z:Waw['ﬁ —> ansS

return ans; ~1
} else { ahsS = avy LA

SumTask left = new SumTask(arr,lo, (hi+lo)/2);
SumTask right= new SumTask{arr,{hi+lo}f2,hi};
left.fork(); // fork a thread and calls compute
int rightAns = right+computef};ffwaLLemmmmetﬁraﬂﬂy
int leftAns = left.join(); // get result from left

return leftAns + rightAns;)
} } M I AR (2 A s, riqa TS
}

static final ForkJoinPool POOL = new ForkJoinPool() ;
int sum(int[] arxr){ 3
SumTask task = new éﬁ&%ask{arr,ﬂ,arr+length}
return POQL.invoke(task) ;
// invoke returns the value compute returns

} 1172/2014 37

*

*

*

*

Getting good results in practice

Sequential threshold

— Library documentation recommends doing approximately
100-5000 basic operations in each “piece” of your algorithm

Library needs to “warm up”

— May see slow results before the Java virtual machine re-
optimizes the library internals

— Put your computations in a loop to see the “long-term benefit”

Wait until your computer has more processors &

— Seriously, overhead may dominate at 4 processors, but
parallel programming is likely to become much more important

Beware memory-hierarchy issues
— Won't focus on this, but often crucial for parallel performance

1172/2014 38

