cse332-16au-lec12-ComparisonSorting-day2

CSE 332: Data Structures & Parallelism

Lecture 12: Comparison Sorting

Ruth Anderson
Autumn 2016

Today

» Dictionaries
— Hashing
« Sorting
— Comparison sorting

10/26/2014

Introduction to sorting

« Stacks, queues, priority queues, and dictionaries all focused on
providing one element at a time

» But often we know we want “all the data items” in some order
— Anyone can sort, but a computer can sort faster
— Very common to need data sorted somehow
« Alphabetical list of people
* Population list of countries
+ Search engine results by relevance

-

« Different algorithms have different asymptotic and constant-
factor trade-offs

— No single ‘best’ sort for all scenarios
— Knowing one way to sort just isn't enough

10/26/2014

More reasons to sort

General technique in computing:
Preprocess (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can
— Find the k" largestin constant time for any k

e
— Perform binary search to find an element in logarithmic time

e

Whether the benefit of the preprocessing depends on
— How often the data will change
— Howmuch data there is

10/26/20 16 4

The main problem, stated carefully

For now we will assume we have n comparable elements in an array
and we want to rearrange them to be in increasing order
Input:
— An array A of data records
— A key value in each data record
— A comparison function (consistent and total)
« Given keys a & b, what is their relative ordering? <,=,>?

« Ex: keys that implement Comparable or have a Comparator that can
handle them

Effect:

— Reorganize the elements of A such that for any 4 and 3,

fi < jthenali]l £ A[j]
— Usually unspoken assumption: & must have all the same data it started with
— Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

10/26/2014

Variations on the basic problem

1.

Maybe elements are in a linked list (could convert to array and back in
linear time, but some algorithms needn’t do so)

Maybe inthe case of ties we should preserve the original ordering
— Sorts that do this naturally are called stable sorts

— One way to sort twice, Ex: Sort movies by year, then for ties,
alphabetically

Maybe we must not use more than O(1) “auxiliary space”
— Sorts meeting this requirement are called ‘in-place’ sorts

— Not allowed to allocate extra array (at least not with size O(n)), but can
allocate O(1) # of variables

— Allwork done by swapping around in the array

Maybe we can do more with elements than just compare

— Comparison sorts assume we work using a binary ‘compare’ operator
— In special cases we can sometimes get faster algorithms

Maybe we have too much data to fit in memory

— Use an “external sorting” algorithm

10/26/2014 i

Sorting: The Big Picture

Simple
algorithms:
O@?)

Insertion sort
Selection sort
Shell sort

10/26/2014

Fancier Comparison
algorithms: lower bound:
Qi log n)

O(n log n)
|

|
Heap sort
Merge sort
Quick sort (avg)

Specialized
algorithms:

O(mn)
|

Budket sort
Radix sort

Handling
huge data
sets

|
External
sorting

| | ey h Can4dS
Insertion Sort — | ke {h“h?mimf hand

« |Idea: At step k, put the k" element in the correct position among
the first k elements

+ Alternate way of saying this:
— Sort first two elements
— Nowinsert 314 element in order
— Nowinsert 4t element in order

* “Loopinvariant” when loop index is i, first i elements are sorted

+ Time?
Best-case ® (nJ Worst-case @Yia)Average” case @')

Nrfp)\j Qorted ’P\edm
I

10/26/20 16

Insertion Sort

« lIdea: At step k, put the k" element in the correct position among
the first k elements

+ Alternate way of saying this:
— Sort first two elements
— Nowinsert 31 element in order
— Nowinsert 4t element in order

* “Loopinvariant” when loop index is i, first i elements are sorted

« Time?
Best-case O(n) Worst-case O(n4) “Average” case O(n?)
start sorted start reverse sorted (see text)

10/26/20 16 g

Selection sort

» ldea: At step k, find the smallest element among the not-yet-
sorted elements and put it at position k

+ Alternate way of saying this:
— Find smallest element, put it 1
— Find next smallest element, put it 2nd
— Find next smallest element, put it 3

* “Loop invariant™ when loop index is i, first i elements are the i
smallest elements in sorted order

« Time? b=
(w? (n® (
Best-case O) Worst-case Q_h)Average" cage@)

10/26/20 16 10

Selection sort

» ldea: At step k, find the smallest element among the not-yet-
sorted elements and put it at position k

+ Alternate way of saying this:
— Find smallest element, put it 1
— Find next smallest element, put it 2nd
— Find next smallest element, put it 3

* “Loop invariant™ when loop index is i, first i elements are the i
smallest elements in sorted order

« Time?
Best-case O(n‘) Worst-case O(n?) “Average” case O(n?)
Always T(1)=1and T(n) =n + T(n-1)
1072652016 11

Insertion Sort vs. Selection Sort

+ Different algorithms
+ Solve the same problem

+ Have the same worst-case and average-case asymptotic
complexity

— Insertion-sort has better best-case complexity; preferable
when input is “mostly sorted”

« QOther algorithms are more efficient for non-small arrays that are
not already almost sorted

— Insertion sort may do well on small arrays

10/26/2014 12

Aside: We won't cover Bubble Sort

« It doesn’t have good asymptotic complexity: O(n?)
+ It's not particularly efficient with respect to common factors

« Basically, almost everything it is good at, some other algorithm
is at least as good at

+ Some people seem to teach it just because someone taught it to
them

Forfun see: "Buhble Sort: An Archaeological & lgarithmic Anakysis”, Owen Astrachan, SIGCSE 2003
httpc sy ¢5. duke. eduf~alasbhubhblestbubble pdf

10/26/2014 13

Sorting: The Big Picture

Simple
algorithms:
O@?)

Insertion sort
Selection sort
Shell sort

10/26/2014

Fancier Comparison
algorithms: lower bound:

O(n log n) Qi log n)
|

|
Heap sort
Merge sort
Quick sort (avg)

Specialized
algorithms:
O(n)
|
Bucket sort

Radix sort

Handling
huge data
sets

|
External
sorting

14

Heap sort

« Sorting with a heap is easy:
~ insert each arr[i], better yet use buildHeap () (h
— for(i=0; 1 < arr.length; i++}—a;?

arr[i] = deleteMin()

* Worst-case running time: J

+ We have the array-to-sort and the heap
— So this is not an in-place sort
— There's a trick tomm-place. .

—_——

——

10/26/2014

)

fogﬂl OC"[/Q "

15

Heap sort

« Sorting with a heap is easy:
— insert each arr[i], better yet use buildHeap
— for(i=0; 1 < arr.length; 1i++)

arr[i] = deleteMin() ;
+ Worst-case running time: O(n 1og nn) why?
+ We have the array-to-sort and the heap

— So this is not an in-place sort
— There's a trick to make it in-place...

10/26/2014

lé

ln-p/ace heap sort But this reverse sorts —

how would you fix that?

— Treat the initial array as a heap (via buildHeap)
— When you delete the it" element, putit at arr[n-1i]

+ It's not part of the heap anymore!

—_—

417 15]9]8]6]10]3] 2|1

| J\ J
| !

heap part sorted part
I::> 51716 9]s8|10fa|3]2]1
|] | J
arr[n-i]= Y I
deleteMin () heap part sorted part

10/26/20 16 17

“AVL sort”

+ How?

10/26/2014

1

“AVL sort”

+ We can also use a balanced tree to:
— insert each element: total time O(n 1og n)

— Do an in-order traversal O(n)

« But this cannot be made in-place and has worse constant
factors than heap sort
— both are O(n 1og n) in worst, best, and average case

— neither parallelizes well
— heap sort is better

+ Don't even think about trying to sort with a hash table...

10/26/2014

19

Divide and conquer

Very important technique in algorithm design
1. Divide problem into smaller parts
2. Solve the parts independently
— Think recursion
— Or potential parallelism
 patdiietsh

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half,
split into halves...

10/26/2014 20

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: | Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)

Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a "pivot” element
Divide elements into those less-than pivot
and those greater-than pivot
Sort the two divisions (recursively on each)
Answer is [sorted-less-thanthen pivot then
sorted-greater-than]

10/26/2014 21

Mergesort

1l 1 2 3 4] B 7

a s 2|19 |4

tn
w
i
=

lo hi

+ To sort array from position 1o to position hi:
— Ifrangeis 1 element long, it's sorted! (Base case)

— Else, split into two halves:
« Sortfrom loto (hi+lo) /2

+ Sort from (hi+lo)/2to hi Mlyeste -HMP

* Merge the two halves together —

_V Y
+ Merging takes two sorted parts and sorts everything 57
— O(n) but requires auxiliary space...

10/26/2014 21

Example, focus on merging

tn
w
o
=N

Start with: g 2 9 4

tn
=

After we return from a 4 8 9

2
left and right recursive calls
(pretend it works for now) ﬁ

70/

Merge:
Use 3 “fingers” aux| |
and 1 more array /"

(After merge,
copy back to
original array)

10/26/2014 23

Example, focus on merging

Start with: 8 2 0 4 5 3 1 6
After recursion: >l 41819l 1!l3]| 5] 6
(hot magic ©)

/ /
Merge:
Use 3 “fingers” 1
and 1 more array /

(After merge,
copy back to
original array)

10/26/2014 24

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

n

tn

25

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

n

tn

26

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

5 1
1 5

/
/

27

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

S 1
1 S
S

28

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

S 1
1 S
S

20

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

S 1
1 S
S 8

30

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

S 1
1 S
S 8

3l

Example, focus on merging

Start with:

After recursion:
(hot magic ©)

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

10/26/2014

S 1
1 S
S 8
3 8

32

Mergesort example. Recursively splitting
list in half

S |29 |4 |53 |1]|¢6
Divide — —
Divide % 2 ; L6
Divide 32 24 23 - Lo
a N N <\
1 element 8 2 9 4 5 3 1 6

10/26/2014

Mergesort example: Merge as we return

from recursive calls
\3 21945316

Divide — T
8§29 4 S 316
Divide ‘\ /
N
Divid 8 2 9 4 53 1 6
ivide —_—
N ¥ N P N
1 elem ent 8 2 9 4 5 3 1 6
e N w4 w4 o
Merge ™ 4 9 3 5 1 6
Merge \./ K/

When a recursive call ends, it’s sub-arrays are each in order; just
10262016 heed to merge them in order together 34

Mergesort example: Merge as we return
from recursive calls

'8 |2|9|4]5[3]|1]6]
Divide — —_—
$2 9 4 5316
Divide / \ / \
Divid 8 2 2 4 5 3 16
1IVLILe
Y N N s
1 element 8 2 9 4 5 3 1 6
o Ny N / N4
Merge , *¢ 4 9 3 5 1 6
Merge \./ \.4/6/

2 489 1 3 5

Merge 123456809

We need another array in which to do each merging step; merge

107262016 results into there, then copy back to original array ss

Mergesort, some details: saving a little time

« What if the final steps of our merging looked like the following:

2 (4[5 161]3[8]9] pamarray

/! /

1 2 3 4 5 6 Auxiliary array

/

« Seems kind of wasteful to copy 8 & 9 to the auxiliary array just
to copy them immediately back...

10/26/2014 36

Mergesort, some details: saving a little time

« Unnecessary to copy ‘dregs’ over to auxiliary array

— If left-side finishes first, just stop the merge & copy the
auxiliary array:

copy S S

S
— Ifright-side finishes first, copy dregs directly into right side,
then copy auxiliary array

e first

second I

10/26/20 16 37

Some details: saving space / copying

Simplest / worst approach:
Use a new auxiliary array of size (hi-1o0) for every merge

Returning from a recursive call? Allocate a new array!

Better:
Reuse same auxiliary array of size n for every merging stage

Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):

Don't copy back —at 2?4t 6t merging stages, use the
original array as the auxiliary array and vice-versa

— Need one copy at end if number of stages is odd

10/26/2014 38

Picture of the “best” from previous slide:
Allocate one auxiliary array, switch each step

First recurse down to lists of size 1
As we return from the recursion, switch off arrays

HANEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
WA W W W AW W W W W W A W W A Mageby

.+ + &t + { [§ 1T [[[]}
VYOV N N S S/ Mergeby?
| | | | | | | | |
! ' v v \ v \ S Merge by 4
\ Ve \ / I Mergebhv 8
| 1 | 7 | Merge by 16
| |

v C opy if Needed

Arguably easier to code up without recursion at all
10/26/2016 39

Linked lists and big data

We defined the sorting problem as over an array, but sometimes
you want to sort linked lists

One.approach: —~
— Convertto array: O(n)

— Sort: O(n log n)
— Convert back to list: O(n)

C@Drks very nicely on linked lists directly

— heapsort and quicksort do not
— insertion sort and selection sort do but they're slower

Mergesort is also the sort of choice for external sorting
— Linear merges minimize disk accesses

10/26/2014

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time (and space):

To sort n elements, we:
— Return immediately if n=1

— Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation?

10/26/2014

41

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time (and space):

To sort n elements, we:
— Return immediately if n=1
— Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

T(1)=c¢,
T(n)=2T(nf2) + con

10/26/2014

41

MergeSort Recurrence

(For simplicity let constants be 1 — no effect on asymptotic answer)

T(1)=1 So total is 2XT(n/2¥) + kn where
T(n) = 2T(n/2) +n nf2k=1,ie. logn =k
=2(2T(n/4) + nf2) +n That is, 21°9"T(1) +n logn
=4T(n/4) + 2n =n+nlogn
=4(2T(n/8) + n/4) + 2n = O(n log n)
=38T(n/3) + 3n
.... (after k expansions)
= 2KT(n/2%) + kn

10/26/2014 43

Or more intuitively...

This recurrence comes up often enough you should just “know” it's
O(h log n)

Merge sortis relatively easy to intuit (best, worst, and average):
+ The recursion “tree” will have log n height
+ At each level we do a total amount of merging equal to n

(slz]9]4[s][3]1]6]

Divide -
§2 9 4 5316
Divide "
2 9 4 g3 "1 6
Divide y —
A -, w . W
1 element 8 2 9 4 £ 3 is
A i w, "y o
lerge 5 °g 4 9 3 5 16
Me - - i
R 1356

Merge | 53 4 £%68 9

10/26/201 6 44

Quicksort

« Also uses divide-and-conquer
— Recursively chop into halves

— But, instead of doing all the work as we merge together, we’'ll
do all the work as we recursively splitinto halves

— Also unlike MergeSort, does not need auxiliary space

*(O(n log n)on average ©, but O(n?) worst-case &
— MergeSort is always O(nlogn)
— So why use QuickSort?

« Can be faster than mergesort
— Ofiten believed to be faster

— Quicksort does fewer copies and more comparisons, so it
depends on the relative cost of these two operations!

10/26/2014 45

Quicksort Overview

1. Pick a pivot element
— Hopefully an element ~median_

— Good QuickSornt performance depends on good choice of pivot, we'll see
wihy later, and talk about good pivot selection later

2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot
3. Recursively sot Aand C
4. The answeris, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

10/26/2014 44

Quicksort: Think in terms of sets

31 TH‘\ select pivot value
13 43 /—-———7 5
92 0 @

S S partition 5

a

QuickSort(5,) and
QuickSort(S,)

1
B 0 13 26 31 43 A7 65 75 81 02 Presto! Sis sorted

[Weiss]

10/26/2014 47

Quicksort Example, showing recursion

s[2]9]4]5]3]1]e] >

Divide — < —_—

243 jj = 8 9 ¢
Divide i —
2 1 - 4 6 8 9
Divide - -
"y
1 element 12
G 1/ |
Conquer 1 2 / \ /
Conquer ' ‘ v
1254 | 6 8 9
(‘,mlqu;r_\-\‘ —

1 2 3 45 689

10/26/2014

(8]2]9[4]s]s[1]6]

Divide ' - .

MergeSort - 82 9 4 5316
ivide et
Recursion Tree s2 7 94 5
Divide — - >
1 element 8 g. 2* 4 5'

Merge 5 g 49 3

Merge T

==
[
=
.
rhn
L
i
=

Divide

1en

L 24 31
Divide r"";

6 3 9 QuickSort

e
Divide % 4
1 element 1 2 Recursion Tree
Conquer ‘Y / \
1 2
— |

[unquﬂl) 3 68 9 3 0
_ . l ‘f’f
ONqUEr 4 2 3 4 5 6 8 9

10/26/201 64

Quicksort Details

We have not yet explained:

+ How to pick the pivot element
— Any choice is correct: data will end up sorted

— But as analysis will show, want the two partitions to be about
equalin size

+ How to implement partitioning

— In linear time
— In place

10/26/2014 50

. 81219145 1|6
Pivots Divide — T
243 1 - 8 9 6
Dividle === ' S
» Best pivot? Divid - | 6 38 9
Vo ivide =3
— Niedian 1 element 1 2
- Halve eachtime . '
‘onquer ; ,
1 ; ' ¥
(unquﬂl s 3 4 l 6 S 9
1 ‘_‘”f’—'
Conquer 12 3 4 6 8 0

+ Worst pivot?
— Greatest/least element
— Reduce to problem of size 1 smaller

— O(n?)

10/26/2014

Quicksort: Potential pivot rules

While sorting arxr from 1o (inclusive) to hi (exclusive)...

Pick arr[lo] orarr[hi-1]
— Fast, but worst-case is (mostly) sorted input

* Pick random elementin the range

— Does as well as any technique, but (pseudo)ran ber
generation can be slow {\

— (Still probably the most elegant approach)

Median of 3, e.9., arr[le], arr[hi-1], arr[(hi+lo) /2]
— Common heuristic that tends to work well

10/26/2014 52

Partitioning

« Thatis, given 8,4, 2,9, 3,5, 7 and pivot 5
— Dividing into left half & right half (based on pivot)

+ Conceptually simple, but hardest partto code up correctly
— After picking pivot, need to partition
* |deally in linear time

* |deally in place

+ Ideas?

10/26/2014

53

*

Partitioning

One approach (there are slightly fancier ones):
1. Swap pivotwith arr[1leo]; move it ‘out of the way’
2. Usetwo fingers i and j, starting at 1o+1 and hi-1 (start &
end of range, apart from pivot)

3. Move from right until we hit something less than the pivot;
belongs on left side
Move from left until we hit something greater than the pivot;
belongs on right side
Swap these two; keep moving inward
while (i < j)
if (arr[j] > pivot) J—-
else if (arr[i] < pivot) i++
else swap arr[i] with arr([]]

4. Put pivot back in middle (Swap with arr[i])

10/26/20 16 54

Quicksort Example

« Step one: pick pivot as median of 3
- 1lo=0,hi=10

01 2 3 4
8/1,4(9|0

| —

|
oo
(RO REN
e [}
) [ov]o

« Step two: move pivot to the 1o position

M|
~] |0

N
\
Voo lo

6
5

O ks
L |n

2 3
49

oo
=

10/26/2014 55

Often have more than
Qufcksort’ Examp[e one swap during partition —

this is a short example

Now partition in place |[g |14 |9]|0l3[5(2|7]8

/ /
Move fingers 6(1(4|19|0(3([5(2]|7|8
/ L
Swap 6(1|4(2|10[3|5]|9(7|8
/ /

Move fingers

Move pivot

10/26/2014 56

Quicksort Analysis

Best-case?

+ Worst-case?

+ Average-case?

10/26/2014

57

Quicksort Analysis

+ Best-case: Pivot is always the median
T(0)=T(1)=1

T{n}@+ -- linear-time partition

Same ence as mergesort: O(n log n)

* Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1

CT n=1T(n-1) +n

Basically same recurrence as selection sort: O{nz}
pt LI

+ Average-case (e.d., with random pivot)
— O(n 1og n), not responsible for proof (in text)

10/26/2014

58

Quicksort Cutoffs

« For small n, all that recursion tends to cost more than doing a
quadratic sort

— Remember asymptotic complexity is for large n
— Also, recursive calls add a lot of overhead for small n
+ Common engineering technique: switch to a different algorithm
for subproblems below a cutoff
— Reasonable rule of thumb: use insertion sort for n < 10
* Notes:
— Could also use a cutoff for merge sort
— Cutoffs are also the norm with parallel algorithms
« switch to sequential algorithm
— None ofthis affects asymptotic complexity

10/26/2014

50

Quicksort Cutoff skeleton

vold quicksort(int[] arr, int lo, int hi) {
if(hi - lo < CUTOFF)

iEEEEEEEPSort{arrrlo,hi};

else

Notice how this cuts out the vast majority of the recursive calls
— Think of the recursive calls to quicksort as a tree
— Trims out the bottom layers of the tree

10/26/2014]l

