cse332-16au-lec11-Hashingll-day2

CSE 332: Data Structures & Parallelism

Lecture 11:More Hashing

Ruth Anderson
Autumn 2016

Today

» Dictionaries
— Hashing

107242016

Hash Tables.: Review

« Aim for constant-time (i.e., O(1)) find, insert, and delete
— “On average” under some reasonable assumptions

+ Ahash table is an array of some fixed size hash table
— But growable as we'll see 0
client hash table library

. .
collisgion? .ollision

F o) it sy table-mdex

rezolution

TableSize —1

107242016 3

Hashing Choices

1. Choose a Hash function

2. Choose TableSize

3. Choose a Collision Resolution Strategy from these:
— Separate Chaining v~
W
+ Linear Probing

* Quadratic Probing

* Double Hashing
e

*+ Otherissues to consider:
— Deletion?
— What to do when the hash table gets “too full™?

107242016

Open Addressing. Linear Probing

+ Why not use up the empty space in the table?
+ Store directly in the array cell (na linked list)

Houwy to deal with collisions?
If h{key) iz already full,

— try (hikey) + 1) % TableSize. [ffull,
— try (hikey) + 2) % TableSize. [ffull,
— try (hikey) + 3) % TahleSize. [ffull .

L
« Example: inserﬁ% |%1® 10
—_
N~

3-; kUﬂl; ‘-Od
(09, 0
L0,

Mmoo -] o o B a — O

Y

., .
=] L

1oi2enls 5

Open Addressing: Linear Probing

* Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. [ffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

107242016

13 = O

L T N Y

38

19

Open Addressing: Linear Probing

* Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. [ffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

107242016

13 = O

L T N Y

38

19

Open Addressing: Linear Probing

* Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. [ffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

107242016

13 = O

L T N Y

109

38

19

Open Addressing: Linear Probing

* Another simple idea: If h (key) is already full,
— try (h(key) + 1) % TableSize. [ffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

107242016

13 = O

L T N Y

109

10

38

19

Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table.

Trying the next spot is called probing
— We just did linear probing:

« ith probe: (h(key) + i) % TableSize
— In general have some probe function £ and .
» ith probe; (h(key) + £(i)) % TableSize

Open addressing does poorly with high load factor 4
— So want larger tables
— Too many probes means no more O(1)

107242016 1

Terminology

We and the book use the terms
i H n i = ” L/-
— “chaining” or “separate chaining
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

107242016

11

Open Addressing: Linear Probing

What about £ind? If value is in table? If not there? Worst case?

What about delete?

How does open addressing with linear probing compare to separate
chaining?

102420 16 12

Open Addressing: Other Operations

insert finds an open table position using a probe function

What about £ind?
— Must use same probe function to “retrace the trail” for the data

— Unsuccessful search when reach empty position

What about delete?
— Mustuse “lazy” deletion. Why?
+ Marker indicates “no data here, but don't stop probing”

10 | = / 23 / / 16 | = | 26

— Note: delete with chaining is plain-old list-remove

10/24/2016 13

Primary Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (a good thing)

o) I
ol jeeiieit it
LI

+ Tends to produce et e e
clusters, which lead ¢ T LIS N
S Ljeiien el
!:SDE:UHEQH E;?She u&uéﬂmmml—'uuuuuum: ! e sienei i
. eee eI .
- Called primary L e eee e uummﬂ@ﬁ‘”mmuu
: L
clustering e seieeieS el PR
.« S h f umméuuw&u
aw the startofa JLIMUL!!IL._I,Q]EJEII_B { o srei
. . L 11 =
clusterin our linear B L L
- | el eeneleis ¥ e eiei L
probing example - o oL oee!]
Ll et 7 eelen eI
) (e el
RCEC Ly [R. Sedgewick]

10/24/2016 14

Analysis of Linear Probing

Trivial fact: Forany 4 < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

*

+ Nondrivial facts we won't prove:

Average # of probes given A(in the limit as TableSize o)
— Unsuccessful search: 1/ 1)
—| 1+ .
2 (1-2),
— Successful search: 1(1)
—| 1+
20 (1-24))

*

This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

107242016

Average # of Probes

Analysis in chart form

» Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Linear Probing Linear Probing
16,00 - 150000
14.00 2 300,00
12.00 2 15000
10,00 O.
’ = 200,00
.00 o
— liar proding ®™ 150,00 —inzar profeng
6.00 not found u not fownd
4.00 Bl 100000
linzai probing E 50.00 e | AT PP OERRE
2.00 : found = ’ Tound
0.00 < 000
e =T - - T T Y T T
(=B I T - T
- E-E-E- - -] & o
Load Fatfor Load Factor

+ By comparison, separate chaining performance is linear in 4 and
has no trouble with 4>1

107242016 14

Open Addressing: Linear probing

(h(key) + £(i)) % TableSize

— For linear probing:
f(i) = 1

— So probe sequence is:

« O probe: h(key) % TableSize

* 1% probe: (h(key) + 1) % TableSize
2m probe: (h(key) + 2) % TableSize
3rd probe: (h(key) + 3) % TableSize

*

it probe: (h(key) + i) % TableSize

107242016 17

Open Addressing: Quadratic probing

+ We can avoid primary clustering by changing the probe function...
(h(key) + £(i)) % TableSize

— For quadratic probing:
f(i) = i?
— So probe sequence is:
« 0 probe: h(key) % TableSize
« 1stprobe: (h(key) + 1) % TableSize
« 2nd probe: (h(key) + 4) % TableSize
» 3" probe: (h(key) + 9) % TableSize

« it probe: (h(key) + i2) % TableSize

* Intuition: Probes quickly “leave the neighborhood”

1072420 16 15

ith probe: (h (key) + i?) % TableSize

Quadratic Probing Example

102420 16

e = =

=

TableSize=10

Insert:

39

18

49

58

79

19

Quadratic Probing Example
TableSize = 10
insert(89)

W W =1 o0 ;N = W = O

107242016

20

Quadratic Probing Example
TableSize = 10
insert(89)
insert(18)

W W =1 o0 ;N = W = O

89

107242016

Quadratic Probing Example

18

W W =1 o0 ;N = W = O

89

107242016

TableSize = 10
insert(89)
insert(18)
insert(49)

22

Quadratic Probing Example

0 49
1
2
3
4
9
6
7
3 13
9 89

107242016

TableSize = 10
insert(89)
insert(18)
insert(49)
49 % 10 = 9 collision!
49+ 1)% 10=10
insert(38)

43

Quadratic Probing Example

0 49
1
2 58
3
4
9
6
7
3 13
9 89

107242016

TableSize = 10

insert(89)

insert(18)

insert(49)

insert(38)
58 % 10 = 8 collision!
(58+ 1) % 10 =9 collision!
58+ 4)% 10=2

insert(79)

24

Quadratic Probing Example

0 49
1
2 58
3 79
4
9
6
7
3 13
9 89

107242016

TableSize = 10

insert(89)

insert(18)

insert(49)

insert(38)

insert(79)
79 % 10 =9 collision!
(79+ 1) % 10 = 0 collision!
(79+4)% 10=3

5

ith probe: (h(key) + i2?) % TableSize

Another Quadratic Probing Example

TableSize =7
0
1 Insert:
2 76 (76 % 7 =6)
40 (40 % 7 =15)
3 48 (48 % 7 = 6)
4 5 (5% 7=15)
5 S5 (55 % 7 =46)
p 47 (47 % 7 =15)

102420 16 26

ith probe: (h(key) + i2?) % TableSize

Another Quadratic Probing Example

TableSize = 7

0 Insert:

1 76 (76 % 7 = 6)
2 40 (0% 7=5)
3 48 (48 % 7 = 6)
4 5 (5% 7=5)
5 55 (55 % 7=6)
6 | 76 47 (47 % 7=75)

102420 16

ith probe: (h(key) + i2?) % TableSize

Another Quadratic Probing Example

TableSize = 7

0 Insert:

1 76 (76 % 7 =6)
2 40 (40 % 7=75)
3 48 (48 % 7 =6)
4 5 (5% 7=5)
5 |40 55 (55 % 7=6)
6 | 76 47 (47 % 7=75)

102420 16

ith probe: (h(key) + i2?) % TableSize

Another Quadratic Probing Example

TableSize = 7

0 |48 Insert:

1 76 (76 % 7 =6)
2 40 (40 % 7=75)
3 48 (48 % 7 =6)
4 5 (5% 7=5)
5 |40 55 (55 % 7=6)
6 | 76 47 (47 % 7=75)

102420 16

ith probe: (h(key) + i2?) % TableSize

Another Quadratic Probing Example

TableSize = 7

0 | 48 Insert:

1 76 (76 % 7 =6)
2 | 5 40 (40 % 7=75)
3 48 (48 % 7 =6)
4 5 (5% 7=5)
5 |40 55 (55 % 7=6)
6 | 76 47 (47 % 7=75)

102420 16

ith probe: (h(key) + i2?) % TableSize

Another Quadratic Probing Example

TableSize = 7

0 | 48 Insert:

1 76 (76 % 7 =6)
2 | 5 40 (40 % 7=75)
3 |55 48 (48 % 7 =6)
4 5 (5% 7=5)
5 |40 55 (55 % 7=6)
6 | 76 47 (47 % 7=75)

102420 16

ith probe: (h(key) + i2?) % TableSize

Another Quadratic Probing Example

0 |48
1

2 | 5
3 |55
4

5 | 40
6 |76

Will we ever get a1 or

102420 16

4719

TableSize = 7

Insert:

76 (76 % 7 =46)
410 (40 % 7=15)
48 (48 % 7 = 6)

S (5% 7=15)

S5 (55 % 7 =6)
47 47 % 7=5)

(47 + 1) % 7 = 6 collision!

(47 +4) % 7 = 2 collision!
p——

(47+9) % 7= 0 collision!

(47 + 16) % 7 = 0 collision!

(47 + 23) % 7 = 2 collision!

32

Another Quadratic Probing Example

insert(47) will always fail here. Why?

0 43

; 5 Forall i, (5+i?)% 7is 0,2, 5, or6

3 | 55 Proof uses induction and

4 B+i2)%7=(5+(-7)2)%7
5 |40 In fact, for all ¢ and k,

° L (c+i2)% k=(c+(i-k)?)%Kk

1072420 16 33

From bad news to good hews

Bad News:

+ After TableSize quadratic probes, we cycle through the same
indices

Good News:

+ IfTableSize is prime and 2 < %2, then quadratic probing will find an
empty slotin at most TableSize/2 probes

« So:Ifyou keep . < and TableSize is prime, no need to detect
cycles

* Proof postedin lecturell.txt (slightlyless detailed proof in textbook)
— ForprimeTand0 < i,j < T/2wherei # j,
(h(key) + i2) % T # (h(key) + 32) % T

Thatis, if T is prime, the first T/2 quadratic probes map
to different locations

107242016 34

Quadratic Probing:
Success guarantee for A < %

» If size is prime and % < V%, then quadratic probing will find
an empty slot in size/2 probes or fewer.
— showforallo < i,3 < size/2andi = 3
(h(x) + i?) mod size # (h(x) + %) mod size
— by contradiction: suppose that for some i #j:
(h(x) + i2?) mod size = (h(x) + j2) mod size
= i? mod size = 3j? mod size
= (i? - 3?) mod size = 0
= [(i + 3)(i - 3)] mod size = 0
BUT size does not divide (i-3) or (i+3)

Howcani+j = 0 or i+3 = size when:

i#3 and 0 <4i,3 < size/27
Similarly howcan i-j = 0 or i-j = size ?

10/24/2016 35

Clustering reconsidered

* Quadratic probing does not suffer from primary clustering:
As we resolve collisions we are not merely growing “big blobs” by
adding one more item to the end of a cluster, we are looking i
locations away, for the next possible spot.

« But quadratic probing does not help resolve collisions between
keys that initially hash to the same index

— Any 2 keys that inifially hash to the same index will have the
same series of moves after that looking for any empty spot

— Called secondary clustering

« Can avoid secondary clustering with a probe function that
depends on the key: double hashing...

——

102420 16 36

Open Addressing: Double hashing

Idea: Given two good hash functions frand g, it is very unlikely that for
some key, h(key) == g(key)

(h(key) + £(i)) % TableSize

— For double hashing:
f(i) = i*g(key)

— So probe sequence is:

« 0 probe: h(key) % TableSize
1¢tprobe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
34 probe: (h(key) + 3*g(key)) % TableSize

o

*

it probe: (h(key) + i*g(key)) % TableSize

+ Detail: Make sure g(key) canthe 0

-~ ——

1072420 16 37

0

h e L =

o))

10/2442014

ith probe: (h(key) + i*g(key)) = TableSize

Open Addressing: Double Hashing

\3,

25

eEX

2.3,

= 10 (TableSize)
Hash Functions:
h(key) =key mod T
ag(key) =1 + ((key/T) mod (T-1))

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

3

V18
3 g(33)-Y
1;7 8J(Mﬂr) (,

38

ith probe: (h(key) + i*g(key)) = TableSize

Double Hashing

T =10 (TableSize)

0 Hash Functions:
1 hikey) =keymod T
2 glkey) = 1 + ((key/T) mod (T-1))
3 13
4 Insert these values into the hash table in this order. Resolve
. any collisions with double hashing:
13
6
28
7
33
3
147
9
43

10/2442014 39

ith probe: (h(key) + i*g(key)) = TableSize

Double Hashing

T =10 (TableSize)

0 Hash Functions:
1 hikey) =keymod T
2 glkey) = 1 + ((key/T) mod (T-1))
3 13
4 Insert these values into the hash table in this order. Resolve
. any collisions with double hashing:
13
6
28
7
33
3 28
147
9
43

10/2442014 41

ith probe: (h(key) + i*g(key)) = TableSize

Double Hashing

T =10 (TableSize)

0 Hash Functions:
1 hikey) =keymod T
2 glkey) = 1 + ((key/T) mod (T-1))
3 13
4 Insert these values into the hash table in this order. Resolve
. any collisions with double hashing:
13
6
28
7 33
332 g33)=1+3mod9%=4
3 28
147
9
43

10/2442014 41

ith probe: (h(key) + i*g(key)) = TableSize

Double Hashing

T =10 (TableSize)
Hash Functions:
hikey) =keymod T
g(key) =1+ ((key/T) mod (T-1))

0

1

2

3 13
4

5

6

7 33
8 28
9 | 147
10/24/2016

Insert these values into the hash table in this order. Resolve
any collisions with double hashing:

13
28
33
147 2 g(147)=1+14mod 9=4¢6
43

41

ith probe: (h (key) + i*g(key)) =

Double Hashing

TableSize

T =10 (TableSize)
Hash Functions:
hikey) =keymod T
g(key) =1+ ((key/T) mod (T-1))

0
1
2
3 13
4
5
6
7 33
8 28
9 | 147
10/24/2016

Insert these values into the hash table in this order. Resolve

any collisions with double hashing:
13

28

33

147 2 g(147)=1+14mod 9=4¢6
43 2 g43)=1+4mod9=5

We have a problem
3+0=3 3+35=1

Tkt g
+ +
It
o= o

|
1D
(o

L]

43

Double-hashing analysis

* Intuition: Since each probe is ‘jumping” by g(key) each time,
we ‘leave the neighborhood” and “go different places from other
initial collisions”

But, as in quadratic probing, we could still have a problem where
we are not "safe” due to an infinite loop despite room in table

— It is known that this cannot happen in at least one case:
or primes p and qsuchthat2 <q<p
h(key) =key % p
g(key) = q - (key % q)

107242016 44

More double-hashing facts

« Assume “uniform hashing”
— Means probability of g(keyl) % p == g(key2) % p IS
1/p

» Non-trivial facts we won't prove:
Average # of probes given A(in the limit as TableSize)

— Unsuccessful search (intuitive): 1
1-2

— Successful search (less intuitive): 1 1
EIiogﬁ.[m]

+ Bottom line: unsuccessful bad (but not as bad as linear probing),
hut successfulis not nearly as had

107242016 46

Where are we?

Separate Chainingis easy
- find, delete proportional to load factoron average
— insert can be constantif just push on front of list

+ Open addressing uses probing, has clustering issues as table fills
Why use it: T

— Less memory allocation?

« Some run-time overhead for allocating linked list (or
whatever) nodes; open addressing could be faster

— Easier data representation?
+ Now:
— Growing the table when it gets too full (aka “rehashing”)
— Relation between hashing/comparing and connection to Java

102420 16 43

Rehashing

+ As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything over

+ With separate chaining, we get to decicde what “too full” means
— Keep load factor reasonable (e.g., < 1)7
— Consider average or max size of non-empty chains?

+ For open addressing, halffull is a good rule of thumb

+ Newtable size
— Twice-as-bigis a good idea, except, uhm, that won't be prime!
— So go about twice-as-big

— Can have a list of prime numbers in your code since you
probably won't grow more than 20-30 times, and then
calculate after that

107242016 44

More on rehashing

+ What if we copy all data to the same indices in the new table?
— Will not work; we calculated the index based on TableSize

* Go through table, do standard insert for each into new table
— lterate over old table: O(n)
— h inserts / calls to the hash function: n - O(1) = O(n)

+ |Isthere some way to avoid all those hash function calls?
— Spaceftime tradeoff: Could store h (key) with each data item

— Growing the table is still O(n); saving h (key) only helps by a
constant factor

102420 16 50

Hashing and comparing

* OQuruse ofint key can lead to us overlooking a critical detail:
— We initially hash E to get a table index

— While chaining or probing we need to determine if this is the E
that | am looking for. Just need equality testing.

* Soa hash table needs a hash function and a equality testing

— In the Java library each object has an equals method and a
hashCode method

class Object {
boolean equals (Object o) {..}
int hashCode() {..}

102420 16 51

Equal objects must hash the same

The Java library (and your project hash table) make a very
important assumption that clients must satisfy...

-oriented way of saying it:
Ifa.equals(b), then we mustrequire
a.hashCode ()==b.hashCode ()

tion object way of saying it:
If c.compare(a,b) == 0,then we must require
h.hash(a) == h.hash(b)

If you ever override equals
— You need to override hashCode also in a consistent way
— See CoreJava book, Chapter 5 for other "gotchas” with equals

107242016

52

By the way. comparison has rules too

We have not emphasized important “rules” about comparison for:
— All our dictionaries
— Sorting (next major topic)

Comparison must impose a consistent, total ordering:

Forall a, b, and ¢,
— If compare(a,b) < 0,then compare(b,a) > 0
— If compare(a,b) == 0,then compare(b,a) ==
— If compare(a,b) < 0 and compare(b,c) < 0,
then compare(a,c) < 0

107242016 54

A Generally Good hashCode() =

Effective Java

int result = 17; // start at a prime

foreach field f

int fieldHashcode =
boolean: (f 7 1: 0)
byte, char, short, int: (int) f
long: (int) (f* (f >>> 32))
float: Float.floatTolntBits(f)
double: Double.doubleToLongBits(f), then above
Object: object.hashCode()

result = 31 * result + fieldHashcode:
return res;lki_/

107242016 55

Final word on hashing

« The hash table is one of the mostimportant data structures
— Efficient find, insert, and delete
— Operations based on sorted order are not so efficient
— Useful in many, many real-world applications
— Popular topic for job interview questions
* Important to use a good hash function
— Good distribution, Uses enough of key's values
— Not overly expensive to calculate (bit shifts good!)
« Important to keep hash table at a good size
— Prime #
— Preferable % depends on type of table

+ What we skipped: Perfect hashing, universal hash functions,
hopscotch hashing, cuckoo hashing

+ Side-comment: hash functions have uses beyond hash tables
— Examples: Cryptography, check-sums

1072420 16 56

