cse332-16au-lec10-Hashing-day2

CSE 332: Data Structures & Parallelism
Lecture 10:Hashing

Ruth Anderson
Autumn 2016

Today

» Dictionaries
— B-Trees
— Hashing

1072152014

Motivating Hash Tables

For dictionary with n key/value ;@

* Unsorted linked-list
* Unsorted array

+ Sorted linked list

+ Sorted array

+ Balanced tree

- B A‘rva
. M l\"}\;

1072152014

~ studat ITJ—.J;S
Kﬂbé)% 297779
| -
:% ’\(eub 2
/

Hash Tables

* Aim for constant-time (i.e., O(1)) £find, insert, and delete

— “On average” under some reasonable assumptions

« Ahash table is an array of some fixed size

hash table
0
+ Basic idea:
function:
h(kev)=»index
>
- - = 3 __-_-‘--‘h-‘\
key space (e.g., integers, strings) TablaSize —1
_— I L

1072152014

Aside: Hash Tables vs. Balanced Trees

* In terms of a Dictionary ADT for just insert, find, delete, hash
tables and balanced trees are just different data structures

— Hash tables O(1) on average (assuming few collisions)
— Balanced trees O(1og n) worst-case

+ Constant-time is better, right?
— Yes, butyou need “hashing to behave” (must avoid collisions)

— Yes, but what if we wantto findMin, findMax, predecessor,
and successor, printSorted?

+ Hashtables are not designed to efficiently implement these
operations

* Your textbook considers Hash tables to be a different ADT
* Not so important to argue over the definitions

1072152016 5

Hash Tables

» There are m possible keys (m typically large, even infinite)
+ We expect our table to have only nitems

——

* nis much less than m (often written n << m)

Many dictionaries have this property

— Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program

— Database: All possible student names vs. students enrolled

— Al: All possible chess-board configurations vs. those
considered by the current player

1072152014

Hash functions

An ideal hash function:

+ |s fast to compute

« “Rarely” hashes two “used” keys to the same index
— Otften impossible in theory; easy in practice
— Will handle collisions a bit later

ash function:

h(kev)=—»index
>

hash table

0

key space (e.g., integers, strings) TableSize -1

1072152014 7

Who hashes what?

+ Hash tables can be generic
— To store keys of type E, we just need to be able to:
1. Test equality: are you the E I'm looking for?
2. Hashable: convert any Eto an int

+ When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

client -Ln_, hash table library
hE,’S‘L ‘%“hd colligion? .
E) ot mmmem) table-index mmmmmmm) Cﬂlhs’m_u
. — s d rezolution
’hﬁ L} N,

+ We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

1072152014 8

More on roles

Some ambiguity in terminology on which parts are *hashing”
hash table library

client
colligion® colligion

E) nt) table-index

\ J
] T
X

“hashing”? “hashing”?

resolution

Two roles must both contribute to minimizing collisions (heuristically)
. Ejgnj should aim for different ints for expected items
— Avoid “wasting” any part of E orthe 32 bits of the int
* Library should aim for putting “similar” ints in different indices
— conversion to index is almost always “mod table-size”
— using WS for table-size is common

1072152016 9

What to hash?

+ We will focus on two most common things to hash:ints and strings

+ Ifyou have objects with several fields, it is usually bestto have
most of the “identifying fields” contribute to the hash to avoid

collisions

« Example:

(€lass Person {
String first; String middle; String last;

H Date birthdate;

L
* An inherent trade-off: hashing-time vs. collision-avoidance
— Use all the fields?

— Use only the birthdate?
— Admittedly, what-to-hash is often an unprincipled guess @

1072152014 10

Hashing integers

key space = integers

Simple hash-function——————==—
{._-_-_I_Ii:keyj = ke TahleSize____B
——>Client. £(x) -

. .ma’_gm—=f_(_x} % TahleSize
+ Fairly fast and natural

®
x

+Tnsert7,18,41,34,10 Y
+ (A= usfal, ignoring corresponding data)

10i2lenls

W = O

-1 @ th e

=T]

11

Hashing integers (Soln)

key space = integers

Simple hash function:
h(key) = key % TableSize
+ Client: £(x) = %
« Libraryg(x) = £(x) % TableSize
« Fairly fast and natural

Example:

+ TableSize =10

+ Insert7, 18,41, 34,10

+ (As usual, ignoring corresponding data)

1072152014

th da W e =

=)

==

10

41

34

18

11

Collision-avoidance

« With “x % TableSize" the number of collisions depends on

— the ints inserted (obviously)
— TableSize

Larger table-size tends to help, but not always \
— Example: 70, 24, 56,43, 10 \
with TableSize =10 and TableSize =EU'_J

+ Technique: Pick table size to be prime. Why?
— Real-life data tends to have a pattern
— “Multiples of 61" are probably less likely than “multiples of 60"
— We'll see some collision strategies do better with prime size

1072152016 13

More arguments for a prime table size

If TableSizeis 60 and...
— Lots of data items are multiples of 5, wasting 80% of table

— Lots of data items are multiples of 10, wasting 90% of table
— Lots of data items are multiples of 2, wasting 50% of table

If TableSizeis 61...
— Collisions can still happen, but 5, 10, 15, 20, ... will fill table
— Collisions can still happen but 10, 20, 30, 40, ... will fill table
— Collisions can still happen but 2, 4, 6, 8, ... will fill table

In general, if x and y are “co-prime” (means ged (x,y)==1), then
(a * x) ¥y == (b * x) % yifandonlyifa 2 vy == b % vy
— Given table size y and keys as multiples of x, we’'ll get a decent
distribution if x & y are co-prime

— So good to have a TableSize that has no common factors

mmmmé’“th any “likely pattern™ x 1

What if the key is not an int?

+ Ifkeys aren't ints, the elient must convert to an int
— Trade-off: speed and distinct keys hashing to distinct ints

« Common and important example: Strings
_ Key space K =ls;z,5, 5.,
+ where s are chars: s, e [0,256]
— Some choices Which avoid collisions hest?

S on=s, o Hello Heppy Halsween

— -ul
.IThen on the Bbrany side we |

-1 STef PoOST
i - | tyoically mod by Taklesize |

= loF 5 \to indindexinto thetable
m-1 o lL N | (o
, 2 lar s PDSvTiond| umbey &
a3 h“«{_):(S.JSTJJ DIl Ll [L.
1=(0
107212018 15
- \
—) '-2] ~ ‘i
£ -+ 1 i -] [—
- L _’_,-P _If_ i \}' - ..,-‘-‘) T

Specializing hash functions

How might you hash differently if all your strings were web
addresses (URLs)?

1072152014

14

Aside: Combining hash functions

A few rules of thumb / tricks:

—

Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash
— Thisis why a factor of 37 works better than 256’

3. When smashing two hashes into one hash, use bitwise-xor
— bitwise-and produces too many 0 bits
— bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. Ifkeys are known ahead of time, choose a perfect hash

1072152014 17

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-possible-keys exceeds table size

So hash tables should support collision resolution
— ldeas?

1072152014

15

Flavors of Collision Resolution

Separate Chaining

Bpen Addressing
Linear Probing
Quadratic Probing

Double Hashing

1072152014

19

Separate Chaining

= =

L T SN

1072152016

Chaining: All keys that map to the same
table location are keptin a list
(a.k.a.a “chain” or “bucket”)

As easy as it sounds

Example:insert 10, 22, 107, 12, 42 with
mod hashing and TableSize =10

20

Separate Chaining

0 J1007 Chaining: All keys that map to the same

| ' table location are keptin a list
(a.k.a.a “chain” or *bucket”)

)

3 As easy as it sounds

4

5 ; Example: insert 10, 22, 107, 12,42 with

6 mod hashing and TableSize = 10

8

9

1072152016 21

Separate Chaining

0 {10/ /
1
2 J{22[/
3
N
5
6
8
9

1072152016

Chaining: All keys that map to the same
table location are keptin a list
(a.k.a.a “chain” or “bucket”)

As easy as it sounds

Example:insert 10, 22, 107, 12, 42 with
mod hashing and TableSize =10

21

Separate Chaining

0 J1007 Chaining: All keys that map to the same

| ' table location are keptin a list
(a.k.a.a “chain” or *bucket”)

2 22|/

3 As easy as it sounds

4

5 ; Example: insert 10, 22, 107, 12,42 with

6 mod hashing and TableSize = 10

7 ——107 /

8§ | /

9

1072152016 23

Separate Chaining

0 J1007 Chaining: All keys that map to the same

| ' table location are keptin a list
(a.k.a.a “chain” or *bucket”)

2 »{12 22|/

3 As easy as it sounds

4

5 ; Example: insert 10, 22, 107, 12,42 with

6 mod hashing and TableSize = 10

7 107 /

8

9

1072152016 24

Separate Chaining

Chaining: All keys that map to the same

0 101/ table location are kept in a list

1 (a.k.a.a “chain” or “bucket”)

7 (42 »12 =22/

3 S~ ———Ag@easy as it sounds

4

5 Example: insert 10, 22, 107, 12, 42 with
i mod hashing and Tablesize'= 10
7 ——07 /

g | /

9 Worst case time for find? O (N

1072152016

5

Thoughts on separate chaining

+ \Worst-case time for £ind?
— Linear
— But only with really bad luck or bad hash function
— So not worth avoiding (e.g., with balanced trees at each bucket)
+ Keep # of items in each bucket small
* Overhead of AVL tree, etc. not worth it for small n

+ Beyond asymptotic complexity, some “data-structure engineering”
can improve constant factors

— Linked list vs. array or a hybrid of the two

— Move-to-front (part of Project 2)
— Leave room for 1 element (or 27) in the table itself, to optimize
constant factors for the common case

+ A time-space tracde-off...

1072152016 26

Time vs. space (constant factors only here)

. 9{10

L =

12

=22/

I 42

L T S

1072152014

<o T [/
1|/ [x
7| a2 | e[l
4|7 |x
s |/ [x
6 | / Ix
C 107 | /)
ST 7 | X
9 X

&

More rigorous separate chaining analysis

Definition: The load factor, A4 of a hash tableis

B N < number of elements
" TableSize

Under chaining, the average number of elements per bucket is l
h"'——._,_‘_‘_‘__.

So if some inserts are followed by random finds, then on average:
« Each unsuccessful £ind compares against >\ items

« Each successful £ind compares against \>\=—items
2_

How big should TableSize he??
/ﬂ\{, boolk CCeomm mENnAS N —ﬁ,p _c;{farg{{

ch;{.n;ng,
1072172016 28

More rigorous separate chaining analysis

Definition: The load factor, 4 of a hash tableis

B N < number of elements
" TableSize

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:
« Each unsuccessful £ind compares against Aitems

+ Each successful £ind compares against 4.2 items
+ If Az low, find & nsert likely to be O(1)

* We like to keep Aaround 1 for separate chainmg

1072152014 29

Load Factor?

10

/

42

h 4

12

>186

W W =1 o0 ;N = W = O
—

1072152014

n.-f

— 7

T TableSize
€

>)0

30

Load Factor?

0 >10| /
1 !

2 42| 12 22/
3 /

4 /

9 /

6 86| /

7 /

3 !

9 /

n 5
_ —_—— 0.5

1 =
TableSize 10

1072152014

Load Factor?

0 110] /|

1 71| o[2] ++[31] 1

2 42| 12 22/

3 83| 73|/

4 /

5 75| —> 5| —+65| —{+95| /
6 >86| /

7 27| 47

8 -88| —-18| —{~38| —>98| /
9

99| 7 n-2! 2z
L =7 2.)
TableSize:ID w

1072152014 32

Load Factor?

W W =1 o0 ;N = W = O

1072152014

107
71 12| 31| 1
42| 12 22/
83| 73|/
/
75| —> 5| —+65| —{+95| /
~86| /
27| 47
~88| —>18| —{~38| 98| /
»99| [/ n 21

A' —_— —_— —
TableSize 10

2.1

33

Separate Chaining Deletion?

1072152014

34

Separate Chaining Deletion

* Not too bad
— Findin table
— Delete from bucket
+ Say, delete 12
« Similar run-time as insert

1072152014

L R e S N O =]

10| /

»42

+12

»22| /

35

