CSE 332: Data Structures \& Parallelism Lecture 5: Algorithm Analysis II

Ruth Anderson

Autumn 2016

Today

- Finish up Binary Heaps
- Analyzing Recursive Code
- Solving Recurrences

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.
(This is an approximation of reality: a very useful "lie".)

Consecutive statements Conditionals

Loops
Function Calls
Recursion

Sum of time of each statement
Time of condition plus time of slower branch
Num iterations * time for loop body
Time of function's body
Solve recurrence equation

Linear search

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) \{
for (int i=0; i < arr.length; ++i)

if(arr[i] ==k)

 return true;return false;
\}
Best case: 6 "ish" steps $=O(1)$
Worst case: 5 "ish" * (arr.length)
$=O$ (arr.length)

Analyzing Recursive Code

- Computing run-times gets interesting with recursion
- Say we want to perform some computation recursively on a list of size n
- Conceptually, in each recursive call we:
- Perform some amount of work, call it w(n)
- Call the function recursively with a smaller portion of the list
- So, if we do $\mathrm{w}(\mathrm{n})$ work per step, and reduce the problem size in the next recursive call by 1, we do total work:

$$
T(n)=w(n)+T(n-1)
$$

- With some base case, like $T(1)=5=O(1)$

Example Recursive code: sum array

Recursive:

- Recurrence is some constant amount of work $\mathrm{O}(1)$ done n times

```
int sum(int[] arr){
    return help(arr,0);
}
int help(int[]arr,int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```

Each time help is called, it does that $\mathrm{O}(1)$ amount of work, and then calls help again on a problem one less than previous problem size.
Recurrence Relation: $T(n)=O(1)+T(n-1)$

Solving Recurrence Relations

- Say we have the following recurrence relation:

$$
\begin{aligned}
& T(n)=6 \text { "ish"+T(n-1) } \\
& T(1)=9 \text { "ish" } \quad \text { base case }
\end{aligned}
$$

- Now we just need to solve it; that is, reduce it to a closed form.
- Start by writing it out:

$$
\begin{aligned}
T(n) & =6+T(n-1) \\
& =6+6+T(n-2) \\
& =6+6+6+T(n-3) \\
& =6+6+6+\ldots+6+T(1)=6+6+6+\ldots+6+9 \\
& =6 k+T(n-k) \\
& =6 k+9, \text { where } k \text { is the \# of times we expanded } T()
\end{aligned}
$$

- We expanded it out n - 1 times, so

$$
\begin{aligned}
T(n) & =6 k+T(n-k) \\
& =6(n-1)+T(1)=6(n-1)+9 \\
& =6 n+3=O(n)
\end{aligned}
$$

$$
\text { Or When does } n-k=1 \text { ? }
$$

$$
\text { Answer: when } k=n-1
$$

Best case:

Binary search

2	3	5	16	37	50	73	75	126

Find an integer in a sorted array

- Can also be done non-recursively but "doesn't matter" here

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Binary search

Best case: 9 "ish" steps $=O(1)$
Worst case: $T(n)=10$ "ish" $+T(n / 2)$ where n is hi-lo

- $O(\log n)$ where n is array. length
- Solve recurrence equation to know that...

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```


Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

$$
-\quad T(n)=10+T(n / 2) \quad T(1)=15
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

$$
-\quad T(n)=10+T(n / 2) \quad T(1)=15
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

$$
\begin{aligned}
-\quad T(n) & =10+10+T(n / 4) \\
& =10+10+10+T(n / 8) \\
& =\ldots \\
& =10 \mathrm{k}+T\left(n /\left(2^{\mathrm{k}}\right)\right) \quad \text { (where } \mathrm{k} \text { is the number of expansions) }
\end{aligned}
$$

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

$$
\begin{array}{ll}
- & n /\left(2^{\mathrm{k}}\right)=1 \text { means } n=2^{\mathrm{k}} \text { means } \mathrm{k}=\log _{2} n \\
\text { - } & \text { So } T(n)=10 \log _{2} n+15 \text { (get to base case and do it) } \\
\text { - } & \text { So } T(n) \text { is } O(\log n)
\end{array}
$$

sum array again

Two "obviously" linear algorithms: $T(n)=O(1)+T(n-1)$

Iterative:

```
int sum(int[] arr){
    int ans = 0;
    for(int i=O; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

Recursive:

- Recurrence is $C+C+\ldots+C$ for n times

```
int sum(int[] arr){
    return help(arr,0);
}
int help(int[]arr,int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```


What about a binary version of sum?

```
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```


What about a binary version of sum?

```
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is $T(n)=O(1)+2 T(n / 2)$
$-1+2+4+8+\ldots$ for $\log n$ times
$-2^{(\log n)}-1$ which is proportional to n (by definition of logarithm)
Easier explanation: it adds each number once while doing little else
"Obvious": You can't do better than $O(n)$ - have to read whole array

Parallelism teaser

- But suppose we could do two recursive calls at the same time
- Like having a friend do half the work for you!
int sum(int[]arr) \{
return help(arr, $0, a r r . l e n g t h) ;$
\}
int help(int[]arr, int lo, int hi) \{
if(lo==hi) return 0;
if(lo==hi-1) return arr[lo];
int mid (ni+lo)/2;
return help(arr,lo,mid) +help(arr,mid,hi)
\}
- If you have as many "friends of friends" as needed, the recurrence is now $T(n)=O(1)+1 T(n / 2)$
- $O(\log n):$ same recurrence as for find

Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

$$
\begin{array}{ll}
T(n)=O(1)+T(n-1) & \\
\text { linear } \\
T(n)=O(1)+2 T(n / 2) & \\
\text { linear } \\
T(n)=O(1)+T(n / 2) & \\
T(n)=O(1)+2 T(n-1) & \\
T(n)=O(n)+T(n-1) & \\
\text { exponithmic } \\
T(n)=O(n)+T(n / 2) & \\
\text { quadratic } \\
T(n)=O(n)+2 T(n / 2) & \\
\text { linear } \\
O(n \log n)
\end{array}
$$

Note big-Oh can also use more than one variable

- Example: can sum all elements of an n-by- m matrix in $O(n m)$

