cse332-16au-lec04-BinMinHeapsII-day2

CSE 332: Data Structures & Parallelism

Lecture 4: Binary Heaps, Continued

Ruth Anderson Autumn 2016

Today

- Binary Min Heap implementation
 - Insert
 - Deletemin
 - Buildheap

Review

- Priority Queue ADT: insert comparable object, deleteMin
- Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
- O(height-of-tree)=O(log n) insert and deleteMin operations
 - insert: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down
- But: tracking the "last position" is painful and we can do better

Array Representation of Binary Trees

From node i:

left child: i*2 right child: i*2+1

parent: i/2

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

http://xkcd.com/163

Pseudocode: insert

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```
void insert(int val) {
  if(size==arr.length-1)
    resize();
  size++;
  i=percolateUp(size,val);
  arr[i] = val;
}
```


Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.


```
int percolateDown(int hole,
                    int val) {
 while(2*hole <= size) {</pre>
  left = 2*hole;
  right = left + 1;
  if(arr[left] < arr[right]</pre>
     || right > size)
    target = left;
  else
    target = right;
  if(arr[target] < val) {</pre>
    arr[hole] = arr[target];
    hole = target;
  } else
      break;
 return hole;
```

	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13
11	0/05/201	б											7

Draw Tree

Example

percolate up

1. insert: 16, 32, 4, 69, 105, 43, 2

deleteMin

10/05/2016

- 8

Example: After insertion

Example: After deletion

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

Other operations

- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down
- remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with $p = \infty$, then deleteMin

Worst Case

Running time for all these operations?

O(logn)

Evaluating the Array Implementation...

Advantages:

Minimal amount of wasted space:

- Only index 0 and any unused space on right in the array
- No "holes" due to complete tree property
- No wasted space representing tree edges

Fast lookups:

- Benefit of array lookup speed
- Multiplying and dividing by 2 is extremely fast (can be done through bit shifting (see CSE 351)
- Last used position is easily found by using the PQueue's size for the index

Disdvantages:

 What if the array gets too full (or wastes space by being too empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!

So why O(1) average-case insert?

- Yes, insert's worst case is O(log n)
- The trick is that it all depends on the order the items are inserted (What is the worst case order?)
- Experimental studies of randomly ordered inputs shows the following:
 - Average 2.607 comparisons per insert (# of percolation passes)
 - An element usually moves up 1.607 levels
- deleteMin is average O(log n)
 - Moving a leaf to the root usually requires re-percolating that value back to the bottom

Aside: Insert run-time: Take 2

- Insert: Place in next spot, percUp
- · How high do we expect it to go?
- · Aside: Complete Binary Tree
 - Each full row has 2x nodes of parent row
 - $-1+2+4+8+...+2^{k}=2^{k+1}-1$
 - Bottom level has ~1/2 of all nodes
 - Second to bottom has ~1/4 of all nodes
- · PercUp Intuition:
 - Move up if value is less than parent
 - Inserting a random value, likely to have value not near highest, nor lowest; somewhere in middle
 - Given a random distribution of values in the heap, bottom row should have the upper half of values, 2nd from bottom row, next 1/4
 - Expect to only raise a level or 2, even if h is large
- Worst case: still O(logn)
- Expected case: O(1)
- Of course, there's no guarantee; it may percUp to the root

Building a Heap

Suppose you have n items you want to put in a new priority queue

- A sequence of n insert operations works
- · Runtime?

Can we do better?

- If we only have access to insert and deleteMin operations, then NO.
- There is a faster way O(n), but that requires the ADT to have a specialized buildHeap operation

Important issue in ADT design: how many specialized operations?

-Tradeoff: Convenience, Efficiency, Simplicity

Floyd's buildHeap Method

Recall our general strategy for working with the heap:

- Preserve structure property
- Break and restore heap ordering property

Floyd's buildHeap:

- 1. Create a complete tree by putting the n items in array indices 1, . . . n
- 2. Treat the array as a heap and fix the heap-order property
 - Exactly how we do this is where we gain efficiency

Floyd's buildHeap Method

Bottom-up:

- · Leaves are already in heap order
- · Work up toward the root one level at a time

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Say we start with this array:
 [12,5,11,3,10,2,9,4,8,1,7,6]

· In tree form for readability

Red for node not less than descendants

· heap-order problem

- Notice no leaves are red

 Check/fix each non-leaf bottom-up (6 steps here)

Happens to already be less than child

Percolate down (notice that moves 1 up)

Another nothing-to-do step

Percolate down as necessary (steps 4a and 4b)

buildHeap Example

buildHeap Example

But is it right?

- · "Seems to work"
 - Let's prove it restores the heap property (correctness)
 - Then let's prove its running time (efficiency)

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Loop Invariant: For all j>i, arr[j] is less than its children

- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

Loop Invariant:

For all j>i, arr[j] is less than its children

True initially:
 If j > size/2, then j is a leaf

 True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```


	40	20	80	30	61	5	9	700	50	60			
0	1	2	3	4	5	6	7	8	9	10	11	12	13
10	0/05/201	6										:	28

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Easy argument: buildHeap is $O(n \log n)$ where n is size

- size/2 loop iterations
- Each iteration does one percolateDown, each is O(log n)

 $\frac{n}{2} \log n \Rightarrow O(n \log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

```
Efficiency
```

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

See Weiss 6.3.4

Better argument: $\mathbf{buildHeap}$ is O(n) where n is \mathbf{size}

 \longrightarrow size/2 total loop iterations: O(n)

- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps... etc.
- ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) = 2 (page 4 of Weiss) = So at most 2(size/2) total percolate steps: O(n)
 - Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

$$= \frac{n}{2} \left(\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{16} \cdot 4 + \dots \right)$$

$$= \frac{n}{2} \left(\frac{1}{2} \cdot \frac{1}{2^{1}} \right) \left(\frac{n}{2} \left(\frac{2}{2^{1}} \cdot \frac{1}{2^{1}} \right) = \frac{n}{2} \cdot 2 = n = 0 (n)$$
Solved at bottom of p.4 Weiss

Lessons from buildHeap

- Without buildHeap, our ADT already let clients implement their own in θ(n log n) worst case
 - Worst case is inserting lower priority values later
- By providing a specialized operation internally (with access to the data structure), we can do O(n) worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- · Can analyze this algorithm for:
 - Correctness: Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was O(n log n)
 - A "tighter" analysis shows same algorithm is O(n)

What we're skipping (see text if curious)

- d-heaps: have d children instead of 2 (Weiss 6.5)
 - Makes heaps shallower, useful for heaps too big for memory
 - How does this affect the asymptotic run-time (for small d's)?

Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)

- Different data structures for priority queues that support a logarithmic time merge operation (impossible with binary heaps)
- merge: given two priority queues, make one priority queue
- Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:

- If one heap is much smaller than the other?
- If both are about the same size?