cse332-16au-lec03-PriorityQueues-day2

E— h'"%
,J W{}/F&\Sé_ AR e c

0 20 + 40" s Q<h1> VAR

Q Z,V\% . L{m‘z . \6 Cﬂz) n O
k\s n &) %
LS00 Vel

CSE 332: Data Structures & Parallelism

Lecture 3: Priority Queues

Ruth Anderson
Autumn 2016

Today

* Finish up Asymptotic Analysis
« New ADT! Priority Queues

10/03/2014

Scenario

What is the difference between waiting for service at a pharmacy
versus an ER?

Pharmacies usually follow the rule
First Come, First Served

Emergency Rooms assign priorities
based on each individual's need

10/03/2014

Scenario

What is the difference between waiting for service at a pharmacy
versus an ER?

Pharmacies usually follow the rule Q“E“E

First Come, First Served

Emergency Rooms assign priorities ..

based on each individual's need Pl‘ll]l‘lt}-’
Queue

10/03/2014 4

A new ADT: Priority Queue

+ Textbook Chapter 6

— We will go back to binary search trees (ch4) and hash
tables (ch5) later

— Nice to see a new and surprising data structure first
+ A prority queue holds compare-able data
— Unlike stacks and queues need to compare items
* Given x and y, is x less than, equal to, or greater than y
* What this means can depend on your data
* Much of course will require comparable data: e.g. sorting
— Integers are comparable, so will use them in examples
* But the priority queue ADT is much more general
« Typically two fields, the priority and the data

10/03/2014 5

Priority Queue ADT

+ Assume each item has a “priority”
— The lesseritem is the one with the greater priority
— So “priority 1" is more important than “priority 4"
— Just a convention, could also do a maximum priority

* Main Operations:
- insertC fﬂ)
— deleteMin

+ Key propeny: deleteMin returns and deletes from the queue
the item with greatest priority (lowest priority value)

— Can resolve ties arbitrarily

deleteMin,

10/03/2014 i

Aside: We will use ints as data and priority

For simplicity in lecture, we'll oten suppose items are just ints
andthe int is also the priority

« So an operation sequence could be

insert 6

insert 5

x = deleteMin // NHow x = 5.
— int priorities are common, but really just need comparable
* Not having “other data” is very rare

— Example: print job has a priority and the file to print is the
data

10/03/20 16 7

To simplify our examples,
we will just use the priority

P g !Or !ty Queue E xXam pl e values from now on

insert a with priority 5 after execution:
insert bwith priority 3

insert c with priority 4

W =deleteMin

X=deleteMin

insert d with priority 2

insert e with priority 6

y=deleteMin

Z=deleteMin

Analogy: insert islike enqueue, deleteMin is like dequeue
But the whole point is to use priorities instead of FIFO

10/03/2014 3

To simplify our examples,
we will just use the priority

P g !Or !ty Queue E xXam pl e values from now on

insert a with priority 5 after execution:
insert bwith priority 3

insert c with priority 4 w=b

W =deleteMin X=c
x=deleteMin y=d

insert d with priority 2 z=a

insert e with priority 6
y=deleteMin
Z=deleteMin

Analogy: insert islike enqueue, deleteMin is like dequeue
But the whole point is to use priorities instead of FIFO

10/03/2014 0

Applications

Like all good ADTs, the priority queue arises often
— Sometimes “directly”, sometimes less obvious

Run multiple programs in the operating system
— “critical” before “interactive” before “compute-intensive”
— Maybe let users set priority level

« Treat hospital patients in order of severity (or triage)

« Select print jobs in order of decreasing length?

» Forward network packets in order of urgency

« Select most frequent symbols for data compression (cf. CSE143)
« Sort: insert all, then repeatedly deleteMin

10/03/2014 10

More applications

+ “Greedy” algorithms
— Select the ‘best-looking’ choice at the moment
— Will see an example when we study graphs in a few weeks
* Discrete event simulation (system modeling, virtual worlds, ...)
— Simulate how state changes when events fire

— Each event e happens at some time t and generates new
events e7, ..., en attimes t+t7, ..., t+fn

— Naive approach: advance “clock” by 1 unit at a time and
process any events that happen then

— Better:
* Pending eventsin a priority queue (priority = time happens)
* Repeatedly: deleteMin andthen insert new events

« Effectively, “set clock ahead to next event”

10/03/20 16 11

Preliminary Implementations of Priority Queue ADT

mnsert

deleteMin

Unsorted Array

o()

O(N)

Unsorted Linked-List

@C{)

on))

Sorted Circular Array

OW)

o (1)

Sorted Linked-List

O(N)

gC1)

—RoeR

Binary Search Tree

(BST)

O(N)

O(N)

1 N
LOM201E Notes&ssume arrays have enough space Z

-ﬁmw’ﬁ ‘Efd “CDSV ot -Q\‘ra*‘ﬂ_h’}_fn% n f
— Y ocwey
JININEIN - -j'% b st igaLé

u:r ot l,_,q'E.l'nﬂklr $LUSU)'+\J
mtan. 5 costh We TM[”:'

VIR
‘[:_\J_-\-‘___ﬁ X _—/__(mtn Fwme, So gom cneld

Fhowne o8 $1 =1 se cong
L j__)
P
WEL 2 ginjlt ‘msert

Th + L
nl-rh ¥ mséfqul ﬁt—’iPM‘EME
‘oSt 15N wmsert
) -{,ﬁ—}_lm W‘mi& .Ifh"a."l' #V‘l*l

BT e fot 5 Yo g Sheag (417 et

fe

InSevds Cumn | 4 -
6[l)) b(-"g e \IFEHCNB:\;T an ri’lqt;r \ ﬂh{}r
\W}-FM*. ey pthsin e " Lin Sevt S
— \In‘iv+? VW | nsets |
(- $0)4 (1 6000) + ()3 Mppoeg o Aol s 5138
n *Q’}*%H{h'ﬂ‘) ’L% (?”'D 05 afr&j_
[nﬁ’lv’-}"j

ﬁﬁﬂ

j?3/2- e St MW@?,,,;@{D 5{&: n@?\% 5\169&9

Ml TWhere ?.f#f- Lvmal wethods o
?rwma SN MOrtize k Ccase bown d
CS@fL Lok K| (n Weig)

o L

mk\a do | C"e;y-ﬁ dord maHzed se !

L+ Cln W ave 1|..{g"'$“;‘n'hm 34:5\{"
aljw&hwx ,ﬂ‘ M‘H o Worstk C38e

B Sum-\nm"a UL g Tumila

e.g W E‘lr‘qﬂ?“"a/

5€ 2 3‘11:314: op &
F“"" C,'i'?fir‘ BF"L '.'IJIUJ,dL, M.Sﬂfr'"" A okers ﬂ,ﬂ) —-1*\1/1&& ’>
‘oo d eunon !-1 Sor g:mr nghL'a"‘rl,n\;EU{m \“P 24

[T
1 &wjﬂlm‘}\ Gﬁ){'r'a“r\m]’M? __SEIHQZ'Flw._._'-:, ‘J[g],‘hc 6(1,-\)
(b would be 3 Veter cwalct —thaa 3 43R $hicure

[..Jf‘h,\ anqurﬁ-zﬂo‘x L2Se ot C;[n)>
st Shde D)

MM{.A 2

/\\/{.hlc byt whst LeWsviov
Lol + o v‘)ou onlu terea ¥d

Mo oSize ok Alu ovv ‘oal(wszia)

{;JA dwe &+ nFder

elew ewts o amw?

Need a good data structure!

+ Next we will show an efficient, non-obvious data structure for this ADT
— But first let’s analyze some “obvious” ideas for nn data items
— All times worst-case; assume arrays “have room”

data insert algorithm /time deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list add at front O(1) search Qo(n)
sorted circular array search / shift O(n) move front (1)
sorted linked list put in right place O(n) remove at front O(1)

))

binary search tree putin right place O(n leftmost O(n

10/03/20 16 13

Aside: More on possibilities

* Note: If priorities are inserted in random order, binary search
tree will likely do better than O(n)

— O(log n) insert and O(log n) deleteMin on average

— Could get same performance from a balanced binary search
tree (e.g. AVL tree we will study later)

+ One more idea: if priorities are 0, 1, ..., k can use array of lists
— insert: add to front of list at arr [priority], O(1)

- deleteMin: remove from lowest non-empty list O(k)

10/03/2014 14

Our Data Structure: The Heap

The Heap:
« Worst case: O(log n) for insert
+ Worst case: O(log n) for deleteMin

« Ifitems arrive in random order, then the average-case of insert
is O(1)

+ Very good constant factors

Key idea: Only pay for functionality needed
+ We need something better than scanning unsorted items
« But we do not need to maintain a full sorted list

« We will visualize our heap as a tree, so we need to review some
tree terminology

10/03/2014 15

Q. Reviewing Some Tree Terminology
root(T): Tree T

leaves(T):
rfidren(B):
parent(H):

Ancestors
descendents(G):

subtree(G):

10/03/2014 lé

L#— of < dgﬁ)

Q. Some More Tree Terminology
depth(B): :L
height(G): Z
height(B): -
degree(B):
branching factor(T):

10/03/2014 17

A. Reviewing Some Tree Terminology

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):

ancestors(F):

descendents(G):

subtree(G):

10/03/2014

A

G and its
children

Tree T

1

A: Some More Tree Terminology

depth(B): 1
height(G): 2
height(T): 4
degree(B): 3

branching factor(T): 0-5

10/03/2014 19

ododes Hloptst 20

Types of Trees
Binary tree: Every node has =2 children HP;L %\‘L
n-ary tree: Every node has =n children
_rl;:rfect tree: Every row is completely full o
Complete tree: All rows except possibly the bottom are

cnmpletely full, and it is filled from IEM u‘tj '{M}?
& O |

Some Basic Tree Properties

Nodes in a_perfect binary tree of height h”
Leaf nodes in a perfect binary tree of height h?
Height of a perfect binary tree with n nodes?

Height of a complete binary tree with n nodes?

10/03/2014

a1

Some Basic Tree Properties

Nodes in a perfect binary tree of height h?
2h+1-1

Leaf nodes in a perfect binary tree of height h?

~h

Height of a perfect binary tree with n nodes?
[1og, n|

Height of a complete binary tree with n nodes?
[log, N}

10/03/2014

2l

Properties of a Binary Min-Heap
More commonly known as a or simply a
A complete [binary] tree

The priority of every non-root node is greater than
(or possibly equal to) the priority of its parent

How is this different from a binary search tree?

S

10/03/2014 23

Properties of a Binary Min-Heap

More commonly known as a or simply a
A complete [binary] tree

The priority of every non-root node is greater than the
priority of its parent

A Heapf@x Not a Heap
® @
R

10/03/20 16 24

Properties of a Binary Min-Heap

* Where is the minimum priority item?

« What is the height of a heap with n items?

@ @ &

10/03/2014

25

Properties of a Binary Min-Heap

* Where is the minimum priority item?
At the root

« What is the height of a heap with n items?
|log; n|

10/03/2014

26

Heap Operations
+ findMin:

deleteMin: percolate down.
insert(val): percolate up.

10/03/2014

27

Operations: basic idea

« findMin:
return root .data

* deleteMin:
1. answer = root.data GI’

2. Move right-most node in last

row to root to restore . .J

structure property

3. “Percolate down” to restore Overall strategy:
heap order property + Preserve complete tree
* insert: structure property
1. Putnewnode in next position '« Thjs may break heap order
on bottom row to restore property
structure property .

Percolate to restore heap
2. “"Percolate up” to restore order property
heap order property

10/03/2014 23

DeleteMin Implementation

1. Delete value at root node (and store it for
later return)

2. There is how a "hole" at the root. We
must "fill" the hole with another value,
must have a tree with one less node,
and it must still be a complete tree

3. The "last” node is the is obvious choice,
but now the heap order property is
jolated

We percolate down to fix the heap order:
While |greater than either chilgj

Swap~with smaller child

2014 20

Percolate Down

Percolate down:

« Keep comparing with both children

* Move smaller child up and go down one level

* Done if both children are = item or reached a leaf node
* Why does this work? What is the run time?

10/03/2014 30

DeleteMin. Run Time Analysis

*

Run time is O(height of heap)

*

A heap is a complete binary tree

*

Height of a complete binary tree of nnodes?
— height =] 1og,(n) |

*

Run time of deleteMin is O(log n)

10/03/2014

3l

Insert

« Add a value to the tree

» Structure and heap order properties
must still be correct afterwards

10/03/2014 32

Insert: Maintain the Structure Property

+ Thereis only one valid tree shape after @

we add one more node! Q

So put our new data there and then
focus on restoring the heap order

property

10/03/2014 33

Maintain the heap order property

Percolate up:

* Put new data in new location

+ If parent larger, swap with parent, and continue
* Done if parent < item or reached root

* Why does this work? What is the run time?

10/03/2014 34

A Clever Trick for Storing the Heap...

Clearly, insert and deleteMin are worst-case O(log n)
+ But we promised average-case O(1) insert (how??)

Insert requires access to the “next to use” position in the tree
+ Walking the tree from root to leaf requires O(log n) steps

* Insert and Deletemin would have to update the “next to use”
reference each time: O(log n)

We should only pay for the functionality we need!!
+ Why have we insisted the tree be complete? ©

All complete trees of size n contain the same edges
« Sowhy are we even representing the edges?

Here comes the really clever bit about implementing heaps!!!

10/03/20 16 35

Array Representation of a Binary Heap

1 @
From nc-d . 2 ‘ 3@

» |eft child: 2 v

. rlghtChIIdQ £) H;@ ms CF_R “® T@
-parentuk/ij Cﬁ)@@@@)

A|B|C|D|E|F|G|H]|I J | K |L

o 1 23 4 & 6 7 & 9 10 11 12 13

« We skip index 0 to make the math simpler

- Actually, it can be a good place to store the current size

of the heap
+ Samt G dees wor kb - storfia a’?ﬁ ‘“M”D 5@ in 'La{a/r

10032016 — MAR WeE2p, ins ¥evh

— '%ralr‘_j) L’{’ﬂ'faff’r\ﬂ. d hté?

Array Representation of a Binary Heap

€Y
From node i — - =
. left child: 4 /‘\ ﬁ
.+ rightchild: 2i+1 e @ @ ©
« parent i/2 an @ ﬁf_t)
A B C D E F G H | J K L

0o 1 2 3 4 5 6 7 8 9 10 11 12 13

« We skip index 0 to make the math simpler

« Actually, it can be a good place to store the current size
of the heap

10/03/2014 37

