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Today – Algorithm Analysis 

• What do we care about? 

• How to compare two algorithms 

• Analyzing Code 

• Asymptotic Analysis 

• Big-Oh Definition 
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What do we care about? 

• Correctness: 

– Does the algorithm do what is intended. 

 

• Performance: 

– Speed   time complexity 

–  Memory   space complexity 

 

• Why analyze? 

– To make good design decisions 

– Enable you to look at an algorithm (or code) and identify the 

bottlenecks, etc. 
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Q: How should we compare two algorithms? 
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A: How should we compare two algorithms? 

• Uh, why NOT just run the program and time it?? 

– Too much variability, not reliable or portable: 

• Hardware: processor(s), memory, etc. 

• OS, Java version, libraries, drivers 

• Other programs running 

• Implementation dependent 

– Choice of input 

• Testing (inexhaustive) may miss worst-case input 

• Timing does not explain relative timing among inputs 

(what happens when n doubles in size) 

 

• Often want to evaluate an algorithm, not an implementation 

– Even before creating the implementation (“coding it up”) 
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Comparing algorithms 

When is one algorithm (not implementation) better than another? 

– Various possible answers (clarity, security, …) 

– But a big one is performance: for sufficiently large inputs, 

runs in less time (our focus) or less space 
 

Large inputs (n) because probably any algorithm is “plenty good” 

for small inputs (if n is 10, probably anything is fast enough) 
 

Answer will be independent of CPU speed, programming language, 

coding tricks, etc. 
 

Answer is general and rigorous, complementary to “coding it up 

and timing it on some test cases” 

– Can do analysis before coding! 
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Today – Algorithm Analysis 

• What do we care about? 

• How to compare two algorithms 

• Analyzing Code 

• Asymptotic Analysis 

• Big-Oh Definition 
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Analyzing code (“worst case”) 

Basic operations  take “some amount of” constant time 

– Arithmetic (fixed-width) 

– Assignment 

– Access one Java field or array index 

– Etc. 

(This is an approximation of reality: a very useful “lie”.) 

 

Consecutive statements  Sum of time of each statement 

Conditionals   Time of condition plus time of  

        slower branch 

Loops    Num iterations * time for loop body 

Function Calls   Time of function’s body 

Recursion   Solve recurrence equation 
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Complexity cases 

We’ll start by focusing on two cases: 

 

• Worst-case complexity: max # steps algorithm takes on “most 

challenging” input of size N 

 

• Best-case complexity: min # steps algorithm takes on “easiest” 

input of size N 
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Example 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   ??? 

} 
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Linear search 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 
Best case: 

 

Worst case: 
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Linear search 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 

Best case:  6 “ish” steps = O(1) 

Worst case: 5 “ish”  *  (arr.length)  

       = O(arr.length) 
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Remember a faster search algorithm? 
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Ignoring constant factors 

• So binary search is O(log n) and linear is O(n)  

– But which will actually be faster? 

– Depending on constant factors and size of n, in a particular 

situation, linear search could be faster…. 

 

• Could depend on constant factors 

– How many assignments, additions, etc. for each n 

– And could depend on size of n 

 

• But there exists some n0 such that for all n > n0 binary search wins 

 

• Let’s play with a couple plots to get some intuition… 
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Example 

• Let’s try to “help” linear search 

– Run it on a computer 100x as fast (say 2010 model vs. 1990) 

– Use a new compiler/language that is 3x as fast 

– Be a clever programmer to eliminate half the work 

– So doing each iteration is 600x as fast as in binary search 

• Note: 600x still helpful for problems without logarithmic algorithms! 
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Logarithms and Exponents 

• Since so much is binary in CS, log almost always means log2   

• Definition: log2 x = y if  x = 2y 

• So, log2 1,000,000 = “a little under 20” 

• Just as exponents grow very quickly, logarithms grow very slowly 
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See Excel file 

for plot data – 

play with it! 



Aside: Log base doesn’t matter (much) 

“Any base B log is equivalent to base 2 log within a constant factor” 

– And we are about to stop worrying about constant factors! 

– In particular, log2 x = 3.22 log10 x 

– In general, we can convert log bases via a constant multiplier  

– Say, to convert from base B to base A:  

   logB x = (logA x) / (logA B) 
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Review: Properties of logarithms 

18 

• log(A*B) = log A + log B 

– So log(Nk)= k log N 

 

• log(A/B) = log A – log B 

 

• X = 

• log(log x) is written log log x 

– Grows as slowly as 22  grows fast 

– Ex:  

 

• (log x)(log x) is written log2x 

– It is greater than log x for all x > 2 

y 

532log2loglog~4loglog 2

32

2222 billion

x2log2
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Logarithms and Exponents 
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Logarithms and Exponents 
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Logarithms and Exponents 
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Today – Algorithm Analysis 

• What do we care about? 

• How to compare two algorithms 

• Analyzing Code 

• Asymptotic Analysis 

• Big-Oh Definition 
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Asymptotic notation 

About to show formal definition, which amounts to saying: 

1. Eliminate low-order terms 

2. Eliminate coefficients 

 

Examples: 

– 4n + 5 

– 0.5n log n + 2n + 7 

– n3 + 2n + 3n 

– n log (10n2 ) 
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Examples 
True or false? 

 

1. 4+3n is O(n) 

2. n+2logn is O(logn) 

3. logn+2 is O(1) 

4. n50 is O(1.1n) 

 

 

Notes: 

• Do NOT ignore constants that are not multipliers: 

– n3 is O(n2) : FALSE 

– 3n is O(2n) : FALSE 

• When in doubt, refer to the definition 
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Examples (Answers) 
True or false? 

 

1. 4+3n is O(n) 

2. n+2logn is O(logn) 

3. logn+2 is O(1) 

4. n50 is O(1.1n) 

 

 

Notes: 

• Do NOT ignore constants that are not multipliers: 

– n3 is O(n2) : FALSE 

– 3n is O(2n) : FALSE 

• When in doubt, refer to the definition 

 

True 

False 

False 

True 
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Big-Oh relates functions 

We use O on a function f(n) (for example n2) to mean the set of 

functions with asymptotic behavior less than or equal to f(n) 

 

So (3n2+17)  is in O(n2)  

– 3n2+17 and n2  have the same asymptotic behavior 

 

Confusingly, we also say/write: 

– (3n2+17)  is O(n2)  

– (3n2+17)  =  O(n2)  

 

But we would never say O(n2) =  (3n2+17) 

 

 

9/30/2016 26 



Formally Big-Oh 

Definition:   g(n) is in O( f(n) ) iff there exist 

positive constants c and n0 such that  

 

 g(n)   c f(n)  for all n  n0 

 

To show g(n) is in O( f(n) ), pick a c large enough to “cover the 

constant factors” and n0 large enough to “cover the lower-order 

terms” 

• Example: Let g(n) = 3n + 4 and f(n) = n 

  c = 5 and n0  = 5 is one possibility 

 

This is “less than or equal to” 

– So 3n + 4 is also O(n5) and O(2n)  etc. 
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An Example 

To show g(n) is in O( f(n) ), pick a c large enough to “cover the constant 

factors” and n0 large enough to “cover the lower-order terms” 

• Example: Let g(n) = 4n2 + 3n + 4 and f(n) = n3 
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What’s with the c? 

• To capture this notion of similar asymptotic behavior, we allow a 

constant multiplier (called c) 

• Consider: 

 g(n) = 7n+5 

 f(n) = n 

• These have the same asymptotic behavior (linear),  

so g(n) is in O(f(n)) even though g(n) is always larger 

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0 

• The ‘c’ in the definition allows for that: 

  g(n)   c f(n)  for all n  n0 

• To prove g(n) is in O(f(n)), have c = 12, n0 = 1 
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What you can drop 

• Eliminate coefficients because we don’t have units anyway 

– 3n2  versus 5n2  doesn’t mean anything when we have not 

specified the cost of constant-time operations (can re-scale) 

 

• Eliminate low-order terms because they have vanishingly small 

impact as n grows 

 

• Do NOT ignore constants that are not multipliers 

– n3 is not O(n2) 

– 3n is not O(2n) 

 

(This all follows from the formal definition) 
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Big Oh: Common Categories 

From fastest to slowest 

O(1)  constant (same as O(k) for constant k) 

O(log n) logarithmic 

O(n)  linear 

O(n log n)         “n log n” 

O(n2)  quadratic 

O(n3)  cubic 

O(nk)  polynomial (where is k is any constant > 1) 

O(kn)  exponential (where k is any constant > 1) 
 

Usage note: “exponential” does not mean “grows really fast”, it 

means “grows at rate proportional to kn for some k>1” 
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More Asymptotic Notation 

• Upper bound: O( f(n) ) is the set of all functions asymptotically less 

than or equal to f(n) 

– g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n)   c f(n) for all n  n0 
 

• Lower bound: ( f(n) ) is the set of all functions asymptotically 

greater than or equal to f(n) 

– g(n) is in ( f(n) ) if there exist  constants c and n0 such that  

  g(n)  c f(n) for all n  n0 
 

• Tight bound: ( f(n) ) is the set of all functions asymptotically equal 

to f(n) 

– Intersection of O( f(n) ) and ( f(n) )  (can use different c values) 
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Regarding use of terms 

A common error is to say O( f(n) ) when you mean ( f(n) ) 

– People often say O() to mean a tight bound 

– Say we have f(n)=n; we could say f(n) is in O(n), which is 

true, but only conveys the upper-bound 

– Since f(n)=n is also O(n5), it’s tempting to say “this algorithm 

is exactly O(n)” 

– Somewhat incomplete; instead say it is (n) 

– That means that it is not, for example O(log n)  

Less common notation: 

– “little-oh”: like “big-Oh” but strictly less than 

• Example: sum is o(n2) but not o(n) 

– “little-omega”: like “big-Omega” but strictly greater than 

• Example: sum is (log n) but not (n) 
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What we are analyzing 

• The most common thing to do is give an O or  bound to the 

worst-case running time of an algorithm 

 

• Example: True statements about binary-search algorithm  

– Common: (log n) running-time in the worst-case 

– Less common: (1) in the best-case (item is in the middle) 

– Less common: Algorithm is (log log n) in the worst-case 

(it is not really, really, really fast asymptotically) 

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case 

• No algorithm can do better (without parallelism) 

• A problem cannot be O(f(n)) since you can always find a 

slower algorithm, but can mean there exists an algorithm 
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Other things to analyze 

• Space instead of time 

– Remember we can often use space to gain time 

 

• Average case 

– Sometimes only if you assume something about the 

distribution of inputs 

• See CSE312 and STAT391 

– Sometimes uses randomization in the algorithm 

• Will see an example with sorting; also see CSE312 

– Sometimes an amortized guarantee 

• Will discuss in a later lecture 
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Summary 

Analysis can be about: 

• The problem or the algorithm (usually algorithm) 

• Time or space (usually time) 

– Or power or dollars or … 

• Best-, worst-, or average-case (usually worst) 

• Upper-, lower-, or tight-bound  (usually upper or tight) 
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Big-Oh Caveats 

• Asymptotic complexity (Big-Oh) focuses on behavior for large n 

and is independent of any computer / coding trick 

– But you can “abuse” it to be misled about trade-offs 

– Example: n1/10 vs. log n 

• Asymptotically n1/10 grows more quickly 

• But the “cross-over” point is around 5 * 1017 

• So if you have input size less than 258, prefer n1/10 

• Comparing O() for small n values can be misleading 

– Quicksort: O(nlogn) (expected) 

– Insertion Sort: O(n2) (expected) 

– Yet in reality Insertion Sort is faster for small n’s 

– We’ll learn about these sorts later 

9/30/2016 39 



Addendum: Timing vs. Big-Oh? 

• At the core of CS is a backbone of theory & mathematics 

– Examine the algorithm itself, mathematically, not the 
implementation 

– Reason about performance as a function of n 

– Be able to mathematically prove things about performance 

• Yet, timing has its place 

– In the real world, we do want to know whether 
implementation A runs faster than implementation B on data 
set C 

– Ex: Benchmarking graphics cards 

• Evaluating an algorithm?  Use asymptotic analysis 

• Evaluating an implementation of hardware/software?  Timing 
can be useful 
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Review: Properties of logarithms 

41 

• log(A*B) = log A + log B 

– So log(Nk)= k log N 

 

• log(A/B) = log A – log B 

 

• X = 

• log(log x) is written log log x 

– Grows as slowly as 22  grows fast 

– Ex:  

 

• (log x)(log x) is written log2x 

– It is greater than log x for all x > 2 

y 
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