cse332-16au-lec02-AlgorithmAnalysis-day2

CSE332: Data Structures & Parallelism
Lecture 2: Algorithm Analysis

Ruth Anderson
Autumn 2016

Today — Algorithm Analysis

+ What do we care about?

+ Howto compare two algorithms
+ Analyzing Code

+ Asymptotic Analysis

* Big-Oh Definition

B/30/2016

What do we care about?

+ Correctness:
— Does the algorithm do whatis intended.

+ Performance:
— Speed time complexity
— Memory space complexity

+ Why analyze?
— To make good design decisions

— Enable you to look at an algorithm (or code) and identify the
bottlenecks, etc.

B/30/2016

K et

Q: How should we compare two algorithms?

Ka%"f&ﬁ FLMCZJ/
“5muxr\5 Jmlr\s

ZW;"\%]w}lhs

B/30/2016 4

A. How should we compare two algorithms?

« Uh, why NOT just run the program and time it??

— Too much variability, not reliable or portable:
« Hardware: processor(s), memory, etc.
+ OS5, Java version, libraries, drivers
« Other programs running
* Implementation dependent

— Choice of input
+ Testing (inexhaustive) may miss worst-case input

« Timing does not explain relative timing among inputs
(what happens when n doubles in size)

« Often want to evaluate an algorithm, not an implementation
— Even before creating the implementation (“coding it up”)
9302016 5

Comparing algorithms

When is one algorithm (not implementation) better than another?

— Various possible answers (clarity, security, ...)

— But a big one is performance: for sufficiently large inputs,
runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good”
for small inputs (if nis 10, probably anything is fast enough)
Answer will be independent of CPU speed, programming language,

coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up
and timing it on some test cases”

— Can do analysis before coding!

B/30/2016 i

Today — Algorithm Analysis

+ What do we care about?

+ Howto compare two algorithms
+ Analyzing Code

+ Asymptotic Analysis

* Big-Oh Definition

B/30/2016

Analyzing code (*worst case’)
%, H':,f
Basic operations take "some amount of® constant time
— Arithrmetic (fixe d-width)
— Assignment
— Accessone Java field or array index
- Etc.
(This is an approximation of realty: a very useful "lig")

Consecutive statements Surm of time of each staternent

Conditionals Time of condition plus time of) o _1_ r‘}
Glower pranch - ST L

Loops Murm iterations * time for loop body o]S ¢

Function Calls Time of function's body

Fecursion Solve recurrence equalion Lsr_tmﬁ 2\‘

WAL 6 g

Complexity cases

We'll start by focusing on two cases:

+ Worst-case complexity: max # steps algorithm takes on “most
challenging” input of size N

+ Best-case complexity: min # steps algorithm takes on “easiest”
input of size N

B/30/2016 0

Example

[
L]
th

16

37

73

126

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array

boolean find(int[]arr,

E

}

B/30/2016

int k) {

10

Linear search

[
L]
th

16

37

L
=

73

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array
boolean find(int[Jarx, int k) {

for(int i=0; /i < arr.length; ++i)

if(arr[i] == klj
Teturn true;
return false;

+5,m//ﬁ

B/30/2016

(") , 0(logn), 6 () |
75 126\@

Ta. T~

Best cas

G opv iy

LWorst case: lf V_d\ \) I'FZ:TI

\ /

11

Linear search

[
L]
th

16

37

L
=

73 | 75(126

Find an integer in a sorted array

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k) {
for(int i=0; i < arr.length; ++i)

if (arr[1] == k)
return true;
return false;

B/30/2016

Best case: 6 “ish” steps = O(1)

Worst case: 5 “ish™ * (arr.length)
= O(arr.length)
i_.a-"""},_\ /"f

/
' o ()

Remember a faster search algorithm?

B/30/2016

13

Ignoring constant factors

« Sobinary search is O(logn and
— But which will actually be faster?

— Depending on constant factors and size of n, in a particular
situation, linear search could be faster....

+ Could depend on constant factors
— How many assignments, additions, etc. for each n
— And could depend on size of n

""-...,___‘___‘_-_-_-_ —
« But there exists snm{nu s)ch that for all n > ny binary search wins >
e

« Let's play with a couple plots to get some intuition...

B/30/2016 14

Example

+ Let'stry to “help” linear search
— Run it on a computer 100x as fast (say 2010 model vs. 1990)
— Use a new compiler/language that is 3x as fast
— Be a clever programmer to eliminate half the work
— So doing each iteration is 600x as fast as in binary search
+ Note: 600x still helpful for problems without logarithmic algorithms!

12

2
]
PFLLLLL LSS

il

__ n———~

BA02014

Logarithms and Exponents

+ Since so muchis binaryin CS, 1og almost always means log,
* Definition: 1og, X = yif x = 27

+ So, log, 1,000,000 = “a little under 20"

+ Just as exponents grow very quickly, logarithms grow very slowly

1 200000

“ N

Z

—— s 2

——hy Y\

1000000

See Excel file | #
for plot data — | o000
play with it!

e ol L]

400000

200000

0 IR EE R Fa i PP s e v ey
12245678 91011121214151617181920

03052016 la

Aside: Log base doesn’t matter (much)

“Any base B log is equivalent to base 2 log within a constant factor”
— And we are about to stop worrying about constant factors!
— In particular, 1og, x = 3.22 log,, x
— In general, we can convert log bases via a constant multiplier
— Say, to convert from base B to base A:
logg x = (logy x) / (logy B)

B/30/2016 17

Review:. Properties of logarithms

log(A*B) = log A + log B
— S0 log(N*¥)= k log N

log(A/B) = log A - log B

x = log,2"
log(log x) iswritten log log x
— Grows as slowly as 22 grows fast
- Ex: L 32
log, log, 4billion ~log,log, 2" =log,32=35
(log x) (log x) is written log2?x
— ltis greaterthan log xforallx > 2

B/30/2016 1

Logarithms and Exponents

35
30 -
25

== 2An
20 -

— [
15 ——n
10 - ~d—logn
5
0

03052016 19

Logarithms and Exponents

25

20

15

10

12 3 4567 8 910111213141516171819 20

03052016

20

\r‘k
Logarithms ﬁmﬁ?f’s\ Z/

3000 // |
u-‘v”"ﬁ > |
2N
2500 -7
I"----______‘.“
2000 *l
—— 2"n
1500 e (12 ~
e)
1000 === |Og N
500
0

1357 91113151719212325272931333537394143454749

e

03052016

Today — Algorithm Analysis

+ What do we care about?

+ Howto compare two algorithms
+ Analyzing Code

* Asymptotic Analysis

* Big-Oh Definition

B/30/2016

21

Asymptotic notation

About to show formal definition, which amounts to saying:
. Taill low-order terms
2. Eliminate coefficients
~)

Examples:) OC

— 0.5nlogn+2n+—) GCH ? ""3‘“)

- n3+2”+3n—\) O(Z

‘a..
? ~+lo oq ")

1 log (10r)
ot

\z_m,j.n

B/30/2016

Examples

True or false?

4+3nisom) — | V< (
n+2logn is O(logn) — 3(’ al Sé_ O A

logn+2is O(1) —_—
nis O(1.1") L}L O Oog N

1 ?MJT hf?ﬂl— Jh
Notes: 0 <¥ | Y ue (Yo d

Do NOT ignore constants that are not multipliers:
— n?is O(n?): FALSE

— 3"is O(2"): FALSE

When in doubt, referto the definition

W=

B/30/2016 24

f)

Examples (Answers)

True or false?

True
1. 4+3nis O(n)
2. n+2logn is Ologn) False
3. logn+2is O(1) False
4. n3is O(1.1m) True
Notes:

+ Do NOT ignore constants that are not multipliers:
— n?is O(n?): FALSE
— 3"is O(2"): FALSE

* When in doubt, referto the definition

0/30/201 6 25

Big-Oh relates functions

We use Oon a function f(n) (for example n?) to mean the set of

functions with asymptotic behavior less than or equal to f(n)
i

So (3n?+17) E_ﬂ O(n?)
— 3n°+17 and n? have the same asymptotic behavior

Confusingly, we also say/write:

- (3n*+17) is O(n?)
— (3P+17)_=_ O(n?)

But we would never say O(n?) = (3n#+17) @

B/30/2016 26

y/*y

'l' T
Definition: g(n)is in O f(n)) iff there exist KP ﬁ(")
positive constants ¢ and 11, such that oSN

agln)< c f{n'y foralln=n,

—E_________._._,_,.-

o show g(n)is in O(f(n)), pick a ¢ large enough to “cover the
constant factors™ and 1, large enough to “cover the lower-order L[
terms”

S —
« Example: Let g(n)=3n+4 andf(n)=n }v\ i N
c=95 ans one possibility —
This is “less than or equal to” (’TL’/\ -+ { 1N

— So 3n+4isalso O(n®) and O(2") etc.

B/30/2016 T

An Example 1 ,wust be 2 | (ond o mfual #)
- vau st be 70

Ta show g(n)isin O f{n)), pick a ¢ large enough to " cover the constant
factors" and nylarge enough to "cover the lower-order terms”

« Example Letg(n) =4 +3n+4 and f(n) = %

e wmk oshew POt Y2 43nrY = N

Note Hhat 2l
[‘Jﬂl P L‘t'ﬁ?; R AY

z |

3\«'\ < ?)V\% JMF\ n

4 o2 4n®)
So %?‘ e Y 2 dﬂ"a * 3 ii

R
/PIEK' JH #] 1..-51“‘ o aes
L’{l‘"l. +?>h+‘{ LJ ~+ En 3 3 - J“ﬂ? —Pm« :;'.'J n 2 [

+fhu's ‘Jn"l*t'Sﬂ*L{ \S In O(Iﬁ%)

(D)
S

'r‘\

-10
o

| 0

Nale ®

3@\)'1@1/’\
< ¢« bn b sl n>n,
~—
|6 £2%n,

|0 £ 1ZWN -[-}va\]y\?..]

@) Q[h) S A é(m}ﬂﬂbm
Show - Sn<g . bdwn —{;f sl nNZn,
Note: Sn < 100w dor &l nz |

Chiose: ¢ =L and mo=1
Joe: Sn £ 000 Aoallnzd

@ In) S pn&+2n a[h):nz
Show Snc+2n =2 C- n" e all nzing
Mok Sn® 250" C b, nz |
2n = ?—“1
Se Pa"t.lk.f
C':'?L Noke Sﬂl%Zﬂ‘f—Snz +2n° = :FV\Z
ﬂg:'j— CJ;QY- H217

What's with the c¢?

* To capture this notion of similar asymptotic behavior, we allow a
constant multiplier (called c)

« Consider:
g(n)=7n+5
f(n)=n

+ These have the same asymptotic behavior (linear),
so g(n)isin O(f(n)) even though g(n) is always larger
» Thereis no positive n, such that g(n) = f(n) for alln z n,

* The ‘c’in the definition allows for that:
g(n) < cf(n) forallnz=n,

» Toprove g(n)isin O(f(n)), have ¢ =12, n,=1

B/30/2016 3l

What you can drop

« Eliminate coefficients because we don't have units anyway

— 3n? versus 5n? doesn’t mean anything when we have not
specified the cost of constant-time operations (can re-scale)

» Eliminate low-order terms because they have vanishingly small
impact as n grows

« Do NOT ignore constants that are not multipliers
— nfis not O(n?)
— 3"is not O(2")

(This all follows from the formal definition)

B/30/2016 32

Big Oh: Common Categories

From fastest to slowest

(1) constant (same as O(k) for constant k)
O(logn) logarithmic

vy
o(n) linear O()
O(n log n) ‘n logn’ | ﬁa ILB V\
Q(n?) quadratic M E@f C 7\)
o(n?) cubic
Q(n%) polynomial (where is kis any constant> 1)
Ol k") exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast’, it
means “grows at rate proportional to k" for some k>1"

B/30/2016 33

More Asymptotic Notation)

+ Upper bound: O f(n)) is the set of all functions asymptotically less
than or equal to f(n)

— gin)isin O f(n}) if there exist constants ¢ and n, such that

gin = cf(n)forallnzn, |

b Lower bound: CJ(f(n)) is the set of all functions asymptotically
greater than or equal to fin)

— g isin 2 f{n) 1 if there exist constants ¢ and n, such that

e ———,,

gim = cfin)farallnz=n

+ Tight bound: & f(n)) is the set of all functions asymptotically equal
to f{n)
— Intersection of (f(n)] and C2{ f(n)) (can use diferent ¢ values)

() 11 vs o) e
j(}q 's O (¥ AnD
GOn) s JAGID

WAL 6

Regarding use of terms

A common error is to say O(f(n)) when you mean &(f(n))
— People often say O() to mean a tight bound
— Say we have f(n)=n; we could say f(n) is in O(n), which is
true, but only conveys the upper-bound
— Since f(n)=nis also O(n?), it's tempting to say “this algorithm
is exactly O(n)’
— Somewhat incomplete; instead say it is 68(n)
— That means that it is not, for example O(1og n)
I\ESS commmon rotation:
— “little-oh™: like “big-Oh™ but strictly less than
« Example: sum is o(n?) but not o(n)
— “little-omega”: like “big-Omega” but strictly greater than
« Example: sumis {log n) but not w(n)

B/30/2016 35

What we are analyzing

* The most common thing to do is give an O or 8 bound to the
worst-case running time of an algorithm

« Example: True statements about binary-search algorithm
— Common: 8(1og n) running-time in the worst-case
— Less common: 6(1) in the best-case (item is in the middle)

— Less common: Algorithm is Q(1og log n)in the worst-case
(it is not really, really, really fast asymptotically)

— Less common (but very good to know): the find-in-sorted-
array problem is QX(1og n)in the worst-case

+ No algorithm can do better (without parallelism)

* A problem cannot be O(f(n)) since you can always find a
slower algorithm, but can mean there exists an algorithm

B/30/2016 36

Other things to analyze

+ Space instead of time
— Remember we can often use space to gain time

+ Average case

— Sometimes only if you assume something aboutthe
distribution of inputs

+ See CSE312 and STAT391
— Sometimes uses randomization in the algorithm

« Will see an example with sorting; also see CSE312
— Sometimes an amotrtized guarantee

« Will discuss in a later lecture

B/30/2016 37

Summary

Analysis can be about:
* The problem or the algorithm (usually algorithm)
« Time or space (usually time)
— Orpower or dollars or ...
+ Best-, worst-, or average-case (usually worst)

+ Upper-, lower-, or tight-bound (usually upper or tight)

B/30/2016 35

(s Loy

n vs. [Dj n

« Asymptotic complexity (Big- Dh] focuses on bhehavior for large n
and isindependent of any computer f coding trick

—__B__u_’gxyuu can “abuse” it to be misled about trade-offs
Exarmple: n¥""vs log »
« Asymptotically n¥10 grows maore quickly
» Butthe "cross-over' point is around 5% 107
+ S0if you have input size less than 258 prefer nto
« Comparing Q0 for small nvalues can be misleading
— Quicksart: O(nlogn) (expected)
— Insertion Sort; O(n®) (expected)
— Yetinreality Insertion Sortis faster for smalln's
— We'll learn about these sorts ater |

Big-Oh Caveats

WAL 6 3=

")

o™
“C corsant” &

Addendum: Timing vs. Big-Oh?

*

Atthe core of CS is a backbone of theory & mathematics

— Examine the algorithm itself, mathematically, not the
implementation

— Reason about performance as a function of n
— Be able to mathematically prove things about performance
+ Yet, timing has its place

— In the real world, we do want to know whether
implementation A runs faster than implementation B on data
set C

— Ex: Benchmarking graphics cards
« Evaluating an algorithm? Use asymptotic analysis

« Evaluating an implementation of hardware/software? Timing
can be useful

B/30/2016 41

Review:. Properties of logarithms

log(A*B) = log A + log B
— S0 log(N*¥)= k log N

log(A/B) = log A - log B

x = log,2"
log(log x) iswritten log log x
— Grows as slowly as 22 grows fast
- Ex: L 32
log, log, 4billion ~log,log, 2" =log,32=35
(log x) (log x) is written log2?x
— ltis greaterthan log xforallx > 2

B/30/2016 41

