cse332-16au-lec02-AlgorithmAnalysis-day2

CSE332: Data Structures & Parallelism

Lecture 2: Algorithm Analysis

Ruth Anderson Autumn 2016

Today – Algorithm Analysis

- · What do we care about?
- · How to compare two algorithms
- · Analyzing Code
- · Asymptotic Analysis
- · Big-Oh Definition

What do we care about?

- Correctness:
 - Does the algorithm do what is intended.
- Performance:
 - Speed time complexity
 - Memory space complexity
- · Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

Kiet

Q: How should we compare two algorithms?

Katie 5mins

Zmins

Lucy 4mins 1mins

A: How should we compare two algorithms?

- Uh, why NOT just run the program and time it??
 - Too much variability, not reliable or portable:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - · Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may miss worst-case input
 - Timing does not explain relative timing among inputs (what happens when n doubles in size)
- Often want to evaluate an algorithm, not an implementation
 - Even before creating the implementation ("coding it up")

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is "plenty good" for small inputs (if n is 10, probably anything is fast enough)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

Today – Algorithm Analysis

- · What do we care about?
- · How to compare two algorithms
- · Analyzing Code
- · Asymptotic Analysis
- · Big-Oh Definition

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a very useful "lie".)

Consecutive statements Sum of time of each statement Conditionals Time of condition plus time of

slower branch

Num iterations * time for loop body Loops

Time of function's body **Function Calls** Recursion Solve recurrence equation

8 9/30/2016

if (cond) stmt 1

Complexity cases

We'll start by focusing on two cases:

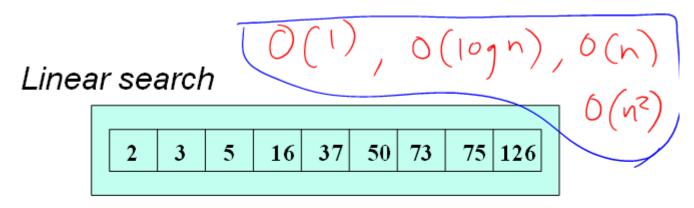
- Worst-case complexity: max # steps algorithm takes on "most challenging" input of size N
- Best-case complexity: min # steps algorithm takes on "easiest" input of size N

Example

```
2 3 5 16 37 50 73 75 126
```

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   ???
}
```

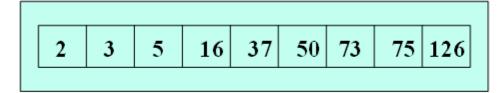


Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
    return false;
}</pre>
Best case: Find 127

// Yorst case: Find 127
```

Linear search



Find an integer in a sorted array

"Summation" Example

for
$$(i=0; i=n; i+t)$$
 {

Sum+t; while operation in side loop

 $n-1$
 $i=0$
 $n + 1 + 1 + 1 + \dots + 1 = n$
 $n + 1 + 1 + \dots + 1 = n$
Closed form

Remember a faster search algorithm?

Ignoring constant factors

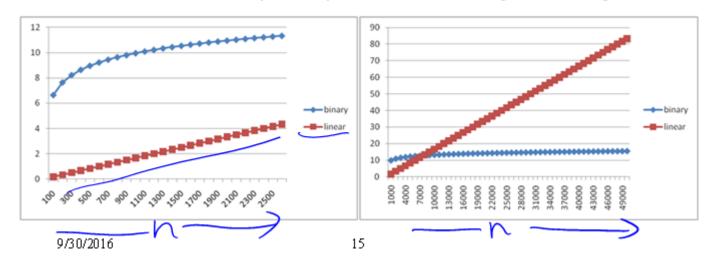
- So binary search is O(log n) and linear is O(n)
 - But which will actually be faster?
 - Depending on constant factors and size of n, in a particular situation, linear search could be faster....
- Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - And could depend on size of n
- **But** there exists som $\notin n_0$ such that for all $n > n_0$ binary search wins

14

Let's play with a couple plots to get some intuition…

Example

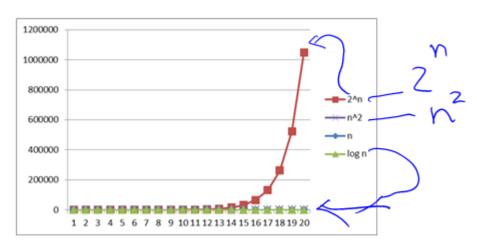
- Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2010 model vs. 1990)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!



Logarithms and Exponents

- Since so much is binary in CS, log almost always means log₂
- Definition: $log_2 x = y if x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!



Aside: Log base doesn't matter (much)

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $log_2 x = 3.22 log_{10} x$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base B to base A:

$$log_B x = (log_A x) / (log_A B)$$

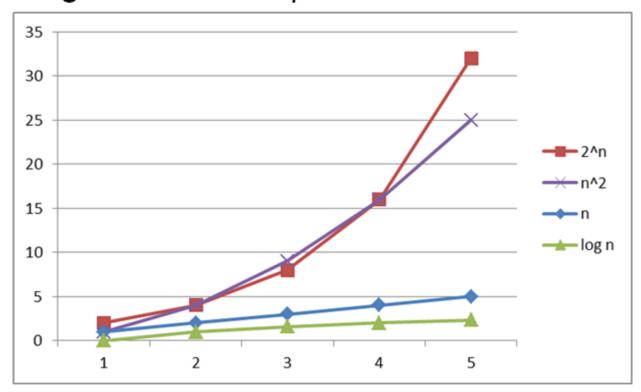
Review: Properties of logarithms

- log(A*B) = log A + log B
 So log(N^k) = k log N
- log(A/B) = log A log B
- $\cdot x = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as 229 grows fast
 - Ex:

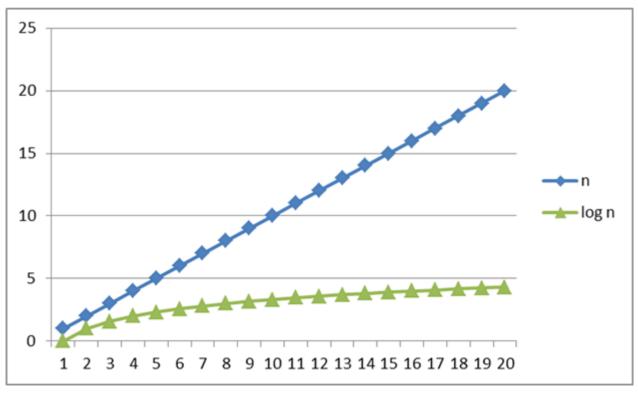
$$\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$$

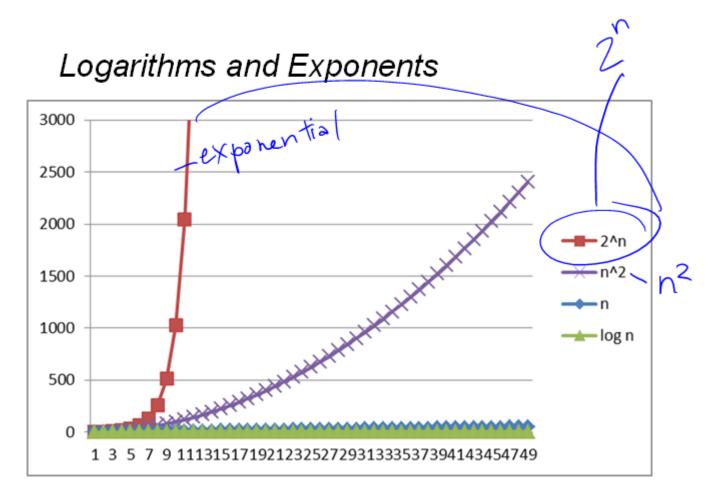
- (log x) (log x) is written log²x
 - It is greater than log x for all x > 2

Logarithms and Exponents



Logarithms and Exponents





Today – Algorithm Analysis

- · What do we care about?
- · How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- · Big-Oh Definition

Asymptotic notation

About to show formal definition, which amounts to saying:

- Eliminate low-order terms
- Eliminate coefficients

Examples:

— 4n+5

 $- \left(0.5n \log n + 2n + \right) \left(\left(n \log n \right) \right)$

 $- n^3 + 2^n + 3n \longrightarrow 0$

 $- n \log (10n^2)$

O (n (logn)

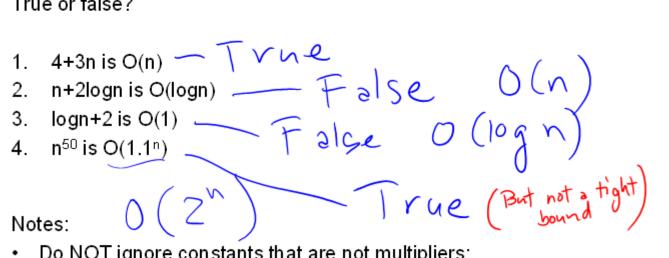
 $+\log n^2$ $\log n + \log n$

9/30/2016

23

Examples

True or false?



- Do NOT ignore constants that are not multipliers:
 - n^3 is $O(n^2)$: FALSE
 - 3ⁿ is O(2ⁿ): FALSE
- When in doubt, refer to the definition

Examples (Answers)

True or false?

1	4+3n is O(n)	True
2.		False
3.	logn+2 is O(1)	False
4.	n ⁵⁰ is O(1.1 ⁿ)	True

Notes:

• Do NOT ignore constants that are not multipliers:

- n^3 is $O(n^2)$: FALSE - 3^n is $O(2^n)$: FALSE

· When in doubt, refer to the definition

Big-Oh relates functions

We use O on a function f(n) (for example n^2) to mean the <u>set of</u> functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

 $-3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $(3n^2+17) is O(n^2)$
- $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2 + 17)$

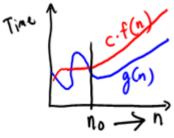
3n+4=0(n)

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that

$$g(n) \le c f(n)$$

for all
$$n \ge n_0$$



To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"

• Example: Let g(n) = 3n + 4 and f(n) = nc = 5 and $n_0 = 5$ s one possibility

This is "less than or equal to"

- So 3n + 4 is also $O(n^5)$ and $O(2^n)$ etc.

4h+(1.h

An Example no must be > 1 (and a natural #)

To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n_o large enough to "cover the lower-order terms"

Factors" and
$$n_0$$
 large enough to "cover the lower-order terms".

• Example: Let $g(n) = 4n^2 + 3n + 4$ and $f(n) = n^3$

We want to show that: $4n^2 + 3n + 4 \le c \cdot n$

Note that:

 $4n^2 \le 4n^3$
 $4n^3 \le 3n^3$

when $n \ge 1$
 $3n \le 3n^3$
 $4n^3 + 3n^3 + 4n^3$

Pick: $C = 11$, $n_0 = 1$ which gives:
 $4n^2 + 3n + 4 \le 4n^3 + 3n^3 + 4n^3 = 11 \cdot n^3$ for all $n \ge 1$
 $4n^2 + 3n + 4 \le 4n^3 + 3n^3 + 4n^3 = 11 \cdot n^3$ for all $n \ge 1$
 $4n^2 + 3n + 4 \le 4n^3 + 3n^3 + 4n^3 = 11 \cdot n^3$ for all $n \ge 1$

(2) f(n)=5n g(n)=100nShow: $5n \le c \cdot 100n$ for all $n \ge n_0$ Note: $5n \le 100n$ for all $n \ge 1$ Change: c = 1 and $n_0 = 1$ Note: $5n \le 100n$ for all $n \ge 1$

(3)
$$f(n) = 5n^2 + 2n$$
 $g(n) = n^2$
Show: $5n^2 + 2n \le c \cdot n^2$ for all $n \ge n_0$
Note: $5n^2 \le 5n^2$ for $n \ge 1$
 $2n \le 2n^2$
So pick:
 $c = 7$ Note: $5n^2 + 2n \le 5n^2 + 2n^2 = 7n^2$
 $n_0 = 1$ (for $n \ge 1$)

(y)
$$f(n) = 6n^2 + 3n + 2$$
 $g(n) = n^3$
Show $6n^2 + 3n + 2 \le c \cdot n^3$ for all $n \ge n_0$
Note: $6n^2 \le 6n^3$
 $3n \le 3n^3$
 $2 \le 2n^3$
Pide: $c = 11$
 $n_0 = 1$
Note: $6n^2 + 3n + 2 \le 6n^3 + 3n^3 + 2n^3 = 11n^3$

 $(for n \ge 1)$

What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

```
g(n) = 7n + 5f(n) = n
```

- These have the same asymptotic behavior (linear),
 so g(n) is in O(f(n)) even though g(n) is always larger
- There is no positive n₀ such that g(n) ≤ f(n) for all n ≥ n₀

31

• The 'c' in the definition allows for that:

```
g(n) \le c f(n) for all n \ge n_0
```

To prove g(n) is in O(f(n)), have c = 12, n₀ = 1

What you can drop

- · Eliminate coefficients because we don't have units anyway
 - $3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations (can re-scale)
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - -3^n is not $O(2^n)$

(This all follows from the formal definition)

Big Oh: Common Categories

From fastest to slowest

O(1)	constant (same as $O(k)$ for constant k)	
$O(\log n)$ $O(n)$	logarithmic	
O(n)	linear \bigcirc	
$O(n \log n)$	"n log n"	
$O(n^2)$	quadratic (1)	
O(n ³)	cubic	
<i>O</i> (<i>n</i> ^k)	polynomial (where is k is any constant > 1)	
O(k ⁿ)	exponential (where k is any constant > 1)	

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

33

More Asymptotic Notation

- **Upper bound**: $O(\mathbf{f(n)})$ is the set of all functions asymptotically less than or equal to $\mathbf{f(n)}$
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$
- Tight bound: Θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (can use different c values)

g(n) in is $\Theta(f(n))$ if $b > t \le G(n)$ is O(f(n)) $A \times D$ g(n) is $\Omega(f(n))$

Regarding use of terms

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Since f(n)=n is also O(n⁵), it's tempting to say "this algorithm is exactly O(n)"
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example O(log n)

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
 - Example: sum is $o(n^2)$ but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sortedarray **problem** is $\Omega(\log n)$ in the worst-case
 - No algorithm can do better (without parallelism)
 - A problem cannot be O(f(n)) since you can always find a slower algorithm, but can mean there exists an algorithm

Other things to analyze

- · Space instead of time
 - Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the distribution of inputs
 - See CSE312 and STAT391
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting; also see CSE312
 - Sometimes an amortized guarantee
 - · Will discuss in a later lecture

Summary

Analysis can be about:

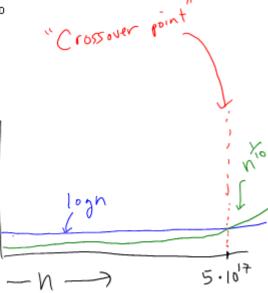
- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-Oh Caveats (nto) "vs. (log n) (log "n) (log "n)

- Asymptotic complexity (Big-Oh) focuses on behavior for <u>large n</u> and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs

Example: n^{1/10} vs. **1 og** n

- Asymptotically n^{1/10} grows more quickly
- But the "cross-over" point is around 5 * 1017
- So if you have input size less than 258, prefer n^{1/10}
- · Comparing O() for small n values can be misleading
 - Quicksort: O(nlogn) (expected)
 - Insertion Sort: O(n2) (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later



Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- · Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

Review: Properties of logarithms

- log(A*B) = log A + log B
 So log(N^k) = k log N
- log(A/B) = log A log B
- $\cdot x = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as 229 grows fast
 - Ex:

$$\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$$

- (log x) (log x) is written log²x
 - It is greater than log x for all x > 2

9/30/2016

41