
CSE 332: Data Structures and Parallelism

Exercises (Concurrency)

Directions: Submit your solutions on Canvas. Submit a pdf file.

EX16. Concurrency! (20 points)

(a) [6 Points] Consider this pseudocode for a bank account supporting concurrent access. Assume that Lock
is a valid locking class, although it is not in Java.

1 class BankAccount {
2 private int balance = 0;
3 private Lock lk = new Lock();
4 int getBalance() {
5 lk.acquire();
6 int ans = balance;
7 lk.release();
8 return ans;
9 }

10 void setBalance(int x) {
11 lk.acquire();
12 balance = x;
13 lk.release();
14 }
15 void withdraw(int amount) {
16 lk.acquire();
17 int b = getBalance();
18 if(amount > b) {
19 lk.release();
20 throw new WithdrawTooLargeException();
21 }
22 setBalance(b − amount);
23 lk.release();
24 }
25 }

If Lock is NOT re-entrant, then the code above is broken. Below is a new version of the withdraw method
your friend proposes. Explain why newWithdraw doesn’t “block forever” (unlike the original code) even if
locks are NOT re-entrant.

1 void newWithdraw(int amount) {
2 lk.acquire();
3 lk.release();
4 int b = getBalance();
5 lk.acquire();
6 if(amount > b) {
7 lk.release();
8 throw new WithdrawTooLargeException();
9 }

10 lk.release();
11 setBalance(b − amount);
12 lk.acquire();
13 lk.release();
14 }

(b) [7 Points] Show that newWithdraw is incorrect by giving an interleaving of two threads, both calling
newWithdraw, in which a withdrawal is forgotten.

(c) [7 Points] (Not related to the bank account example above) Suppose we have a B Tree supporting operations

1



insert and lookup (deletion is NOT a supported operation on this particular B Tree). Consider two options
to synchronize threads accessing the tree:

(a) one lock for the entire tree that both operations acquire/release.

(b) one lock per node in the tree. Each operation acquires the locks along the path to the leaf it needs
and then at the end releases all these locks once the operation is completed.

Explain which approach is preferrable and why.

2


