CSE 332: Data Structures and Parallelism

Exercises (Recurrences)

Directions: Submit your solutions on Canvas. You must submit a pdf file.

EX11. Recurrences, Recurring (20 points)

1 in 2 3 4 5 6	<pre>it first17_a(int[] array, int i) { if (i >= array.length) { return -1; } if (array[i] == 17) { return 0; } </pre>	<pre>1 int first17_b(int[] array, int i) { 2 if (i >= array.length) { 3 return -1; 4 } 5 if (array[i] == 17) { 6 return 0; 7 } </pre>	2 3 4 5	
7 8 9 10 11 12 }	<pre>} if (first17_a(array, i + 1) == -1) { return -1; } return 1 + first17_a(array,i+1);</pre>	<pre>8 int x = first17_b(array, i + 1); 9 if (x == -1) { 10 return -1; 11 } 12 return x + 1; 13 }</pre>	9 10 11 12	

- (a) [6 Points] What kind of input produces the worst-case running time (number of steps) for first17_a(arr, 0)? How about for first17_b(arr, 0)?
- (b) [6 Points] Give recurrences (including a base case) for first17_a and first17_b describing the worstcase running times, where *n* is the length of the array. You may use whatever constants you wish for constant-time work. Remember that recurrences cannot rely on variables.
- (c) [5 Points] Give a tight $\mathcal{O}(-)$ upper bound for the running time of first17_a(arr, 0) and first17_b(arr, 0) given your answers to the previous part. That is, find a closed form for your recurrence. Show how you got your answer.
- (d) [3 Points] Give a tight $\Omega(-)$ worst-case lower bound for the problem of finding the first 17 in an unsorted array (not a specific algorithm). Briefly justify your answer.