CSE332: Data Abstractions

Additional Graph Slides

Hyeln Kim

Topics

e Graph Review
- Graph Terminologies
- Graph Representations: matrix & list
- Topological sort
- Graph traversal: BFS, DFS
- Shortest Path: Dijkstra’s Algorithm

Graphs

Graph terminology

Graphs

. G = (V, E)

Contains set of vertices and set of edges

o

V
E

= number of vertices
= number of edges

Max | E | for undirected graph
IVI +(|V]-1)+(|V]-2)+...+1 = |V|(|]V]|+1)/2

Max | E | for directed graph
IVI+ V] +[V]+...+]|V] = |V]*|V]=]V]?

Graph Terms

e Path

o

List of vertices [v,, vy, ..., v,], such that
(v, v,,) EEforall0<i<n

- Path length = number of edges on path
- Path cost = sum of all edge weights on path

e Cycle

A path that begins and ends at the same node

Undirected Graph

eEdges have no directions

eConnected

If there is a path between all pairs of vertices

e Fully Connected
If there is an edge between all pairs of vertices

Directed Graph

e Edges have direction

* Weakly Connected

If there is an undirected path between all pairs of vertices

e Strongly Connected

If there is a directed path between all pairs of vertices

* Fully Connected
If there is edge (both way) between all pairs of vertices

o /

7

Graph Representation

Adjacency matrix & Adjacency list

o

Graph Representation

 The ‘Best one’ depends on:

- Graph density

- Common Queries
nsert an edge
Delete an edge

~ind an edge
Compute in-degree of a vertex
Compute out-degree of a vertex

o

Adjacency Matrix

i\t a b ¢c d e f g h i
@ @ a 1 1 1 1
b 1
@ (o 1 1
© d 1 1
0 ®@ O | .
f
© © | 1
h 1
* Space Requirement: |V |2

Adjacency Matrix

* Get in-degree: 0O(|V])
* Get out-degree:O(|V])
* Find an edge: 0O(1)
* Insert an edge: 0(1)

* Delete an edge: 0(1)

- Dense graph |E| >>> |V],
-

=

a b ¢ d e f g
1 1 1 1

= = 0 = o Q o o 9

so good for dense graph

/

11

o

Adjacency List

®@ @
® © f
o ® @
o ©

* Space Requirement:

a b C d
b C

C e g

d C f

e h

f i

g f [

h g [

i

O(]Vv] + |E])

e

Adjacency List

- Let d = ave out-degree

* Get in-degree: O(|V|+]|E|) : E ©
* Get out-degree: O(d or 1) : : f

* Find an edge: O(d) : Ih

* Insert an edge: 0(d) i ; :

* Delete an edge: 0(d) i

- Sparse graph |V | >>> d, so good for sparse graph

o

13

Topological Sort

Get linear order of tasks

with dependencies

14

Topological Sort

e Given a set of tasks with precedence
constraints,
find a linear order of the tasks

- No topological ordering in graph with cycle

- Possible to have many topological Oégering
F

o %

Topological Sort

e Topological sort algorithm
- Choose a vertex v with in-degree O
- Output v & Remove v and all of its edges
- Repeat until no more vertices left

16

Topological Sort

@ (E) CeD

@@ ED\® éD\®

Ny O ACBEDF

Topological Sort

e Topological sort Runtime

o

- Choose a vertex v with in-degree O
Single step (No Q / Q):

Total (No Q/ Q):

- OQutput v & Remove v

- Remove all of v's edges

O(|V]+|E])

O(]Vv])
O(IVI?)

Total:

Total:

e Total Runtime: oO(|V]|2+|E])~0O(|V]|?) No Queue

0O(1)
O(|V1)

O(]V])

O(]E])

Queue Yy

18

Graph Traversal

BEFS & DFS

19

Breadth First Search

e Pick the shallowest unmarked node

- Use queue, new node go to the end

Q Start with the root in the queue
@ G Queue | A
D ®E @G
(&) Pop one out, mark it,
(B) (C) put its child into the queue
@ e e @ Queue B C

Breadth First Search

e Pick the shallowest unmarked node

- Use queue, new node go to the end

(A)

B® C
® ®® @

(B)

(A)

©

® ®® @

Pop one out, mark it,
put its child into the queue

Queue | C D E

Pop one out, mark it,
put its child into the queue

Queue | D E F G

Breadth First Search

e Pick the shallowest unmarked node

- Use queue, new node go to the end

(A)

B C
® ®® @

(B)

(A)

©

® ®® @

Pop one out, mark it,
put its child into the queue

Queue | E F G

Pop one out, mark it,
put its child into the queue

Queue | F G

Breadth First Search

e Pick the shallowest unmarked node

- Use queue, new node go to the end

(&) Pop one out, mark it,
(B) (C) put its child into the queue

@ @G @ Queue | G

op one out, mark it,
Q P k |
(B) (C) put its child into the queue

® ®® ©@ "=

Breadth First Search

e Pick the shallowest unmarked node

- Use queue, new node go to the end

(A The queue is empty, Done!

B C
D ®E @

- The order of traversal: ABCDEFG

Queue

- Let b = branching factor, h = height
Space requirement: O(b")

Depth First Search

e Pick the deepest unmarked node

- Use stack, new node go to the top

& Start with the root in the stack
@ G Stack A
D ®® @G
(A Pop one out, mark it,
(B) (C) put its child into the stack
@ e e @ Stack B C

Depth First Search

e Pick the deepest unmarked node

- Use stack, new node go to the top

(A) Pop one out, mark it,
(B) (C) put its child into the stack
@ e e @ Stack B F G
(A

Pop one out, mark it,
(B) © put its child into the stack

@ @ G @ Stack | B | F

Depth First Search

e Pick the deepest unmarked node

- Use stack, new node go to the top

Q Pop one out, mark it,
(B) (C) put its child into the stack
@ e e @ Stack B
(A)

Pop one out, mark it,
(B) © put its child into the stack

@ @ e @ Stack | D | E

Depth First Search

e Pick the deepest unmarked node

- Use stack, new node go to the top

(A)

B C
D ®® @

(B)

(A)

©

® ®E® @

Pop one out, mark it,
put its child into the stack

Stack D

Pop one out, mark it,
put its child into the stack

Stack

Depth First Search

e Pick the deepest unmarked node

- Use stack, new node go to the top

(A The stack is empty, Done!

B C
D ®E @

- The order of traversal: ACGFBED

Stack

- Let b = branching factor, h = height
Space requirement: O(b*h)

Find Shortest Path

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Source Node: A

Pick one with shortest
distance from source:

A

Mark Dist

Path

Mark Dist

1

0

Path

2
—IG)'I'II'I'IUnUJZDmg-

§ 8 8 8 8 8 8 8 o

4

= 38

§ 8 8 8

Dijkstra’s Algorithm

Source Node: A

Pick one with shortest

distance from source: E
Nod | Mark Dist Path | Mark Dist Path
e
A 1 0 - 1 Z(l) N
B 4 A

13 E
C o)

8 E
D 10 A 1 1 A
E 1 A 9 £
F o) 6 c
G 0

8 E
H (00

3 E
| 0

-

Dijkstra’s Algorithm

Source Node: A

Pick one with shortest
distance from source: |

Nod | Mark Dist Path | Mark Dist Path
e
A 1 0 - 1 0 -
B 4 A 4 A
C 13 E 13 E
D 8 E 8 E
E 1 1 A 1 % f‘
F 9 E
G 6 E 6 E
8 E
H 8 E
1 3 E
| 3 E

Dijkstra’s Algorithm

Source Node: A

Pick one with shortest
distance from source: B

@" 3 Nod | Mark Dist Path | Mark Dist Path
12 Afr oo - g
10 \& 4k 4 | g 4 A i 2
7 C 13 E
<d> e f) D 8 E 8 E
5
6 g 2 3 E 1 1 A 1 1 A
F 6 | 6 |
(. G 6 E 6 E
<9/ 9 h ® L H 8 E 8 E
| 1 3 E 1 3 E
\ %

Dijkstra’s Algorithm

Source Node: A

Pick one with shortest

distance from source: F
Nod | Mark Dist Path | Mark Dist Path

e

A 1 0] 1 0 i

B 1 4 A 1 4 A
7 B

C 7 B

D 8 E 8 E

E 1 1 A 1 1 A

F 6 |

G 6 E 6 E

H 8 E 8 £

| 1 3 E 1 3 E

Dijkstra’s Algorithm

Source Node: A

Pick one with shortest
distance from source: @G

@" 3 Nod | Mark Dist Path | Mark Dist Path
@ b C e
1 A 1 0 - 1 0 -
10 1L 4 B 1 4 A 1 4 A
7 C 7 B % B
d e f) D 8 E
6 5 a 2 3 E |1 1 A1 1 A
F 1 6 | 1 g |
G 6 E
8 E
g \"/ 5\l |« 8 &
| 1 3 E 1 3 E
/

Dijkstra’s Algorithm

Source Node: A Pick one with shortest
distance from source: C
@" 3 Nod | Mark Dist Path | Mark Dist Path
@ b ;
1 12 A 1 0 - 1 0 .
10 L 4 B 1 4 A 1 4 A
1 7 B
7 C 7 B
<d> e f D 8 E 8 E
5 E 1 1 A 1 1 A
6 7\2 [3
F 1 6 | 1 6 |
(. G 1 6 E 1 6 E
9) 9 h ® 1 H 8 E 8 E
| 1 3 E 1 3 E

Dijkstra’s Algorithm

Source Node: A

Pick one with shortest
distance from source: D

4 3

=
©—
(@)
w%ﬂﬂ
o = o
NN
—h (@)
—Im-nrnUanDmg
Q.

Mark Dist Path | Mark Dist Path

1 0 - 1 0 -

1 4 A 1 4 A

17 sy g8
8 E

1 1 A 1 1 A

1 6 I 1 6 |

1 6 E 1 g E
8 E

1 3 E 1 3 E

Dijkstra’s Algorithm

Source Node: A Pick one with shortest
distance from source: H

Nod | Mark Dist Path | Mark Dist Path

e

A 1 0 - 1 0 -
B 1 4 A 1 q A
C 1 7 B 1 7 B
D 1 8 E 1 8 E
E 1 1 A 1 1 A
F 1 6 I 1 6 I
G 1 6 E]: g E
H 8 E

I 1 3 E 1 3 E

Dijkstra’s Algorithm

Source Node: A

Done!
@" 33 Nod | Mark Dist Path
QOO [
12 A 1 0
10 I 1 4 B 1 4 A
7 C 1 7 B
<d> e r f) D 1 8 E
6 S 2 \ 3 E |1 1 A
7 F 1 6 |
/ \ G 1 6 E
9) 9 \h/ ® I H| 1 8 &
| 1 3 E

Dijkstra’s Algorithm

Source Node: A

Find shortest path

from Fto A
Nod | Mark Dist Path

e

A 1 0 -
B 1 4 A
C 1 7 B
D 1 8 E
E 1 1 A
F 1 6 I
G 1 6 E
H 1 8 E
I 1 3 E

41

Dijkstra’s Algorithm

e Dijkstra’s Algorithm Runtime

- Initializing each node o(|V])

- Pick smallest v & Mark v
Single step (No PQ / PQ): O(]Vv|) Oflog|V])

Total (No PQ / PQ): o(|V|3) oO(|V]*log|V])
- Update cost of all Tpt4) (No PQ): O(]E])
neighbors of v Total (PQ): O(]E]*log|V])

e Total Runtime: o(|Vv|2+|E|) No Priority Queue
_ O((|V|+|E|)*log|v]|) Priority Queue/

42

Dijkstra’s Algorithm

e Total Runtime: O(|V|?+|E|) No Priority Queue
O((|V|+]|E|)*log|v]|) Priority Queue

- Sparse graph: |V]| >>> |E|, O(|V]|*log|V]|)
Better with Priority Queue

- Dense graph: |E| >>> |V]|, O(|E|*log|V])
=> O(|V|**log|V])
Better without Priority Queue

o /

43

