
1

CSE332: Data Abstractions

Additional Graph Slides

HyeIn Kim

2

Topics

• Graph Review

 - Graph Terminologies

 - Graph Representations: matrix & list

 - Topological sort

 - Graph traversal: BFS, DFS

 - Shortest Path: Dijkstra’s Algorithm

•

3

Graphs

Graph terminology

4

Graphs

• G = (V, E)
 Contains set of vertices and set of edges

 - | V | = number of vertices

 - | E | = number of edges

 Max | E | for undirected graph

 Max | E | for directed graph

|V| + (|V| - 1) + (|V| - 2) + ... + 1 = |V|(|V| + 1) / 2

|V| + |V| + |V| + ... + |V| = |V|* |V| = |V|2

5

Graph Terms

• Path
 List of vertices [v0, v1, ..., vn], such that
 (vi, vi+1) ∈ E for all 0 ≤ i < n

 - Path length =

 - Path cost =

• Cycle

number of edges on path

sum of all edge weights on path

A path that begins and ends at the same node

6

Undirected Graph

•Edges have no directions

•Connected

• Fully Connected

If there is a path between all pairs of vertices

If there is an edge between all pairs of vertices

7

Directed Graph

• Edges have direction

• Weakly Connected

• Strongly Connected

• Fully Connected

If there is an undirected path between all pairs of vertices

If there is edge (both way) between all pairs of vertices

If there is a directed path between all pairs of vertices

8

Graph Representation

Adjacency matrix & Adjacency list

9

Graph Representation

• The ‘Best one’ depends on:

 - Graph density

 - Common Queries

 Insert an edge

 Delete an edge

 Find an edge

 Compute in-degree of a vertex

 Compute out-degree of a vertex

10

Adjacency Matrix

• Space Requirement:

f
e

d

b

a

c

g

h
i

f\t a b c d e f g h i

a 1 1 1 1

b 1

c 1 1

d 1 1

e 1

f 1

g 1 1

h 1 1

i

| V |2

11

Adjacency Matrix

• Get in-degree:

f\t a b c d e f g h i

a 1 1 1 1

b 1

c 1 1

d 1 1

e 1

f 1

g 1 1

h 1 1

i

O(|V|)

• Get out-degree:

• Find an edge:

• Insert an edge:

• Delete an edge:

O(|V|)

O(1)

O(1)

O(1)

- Dense graph |E| >>> |V|, so good for dense graph

12

Adjacency List

• Space Requirement:

f
e

d

b

a

c

g

h
i

a b c d e

b c

c e g

d c f

e h

f i

g f i

h g i

i

O(|V| + |E|)

13

Adjacency List

- Let d = ave out-degree

• Get in-degree: O(|V|+|E|)

• Get out-degree:

• Find an edge:

• Insert an edge:

• Delete an edge:

O(d or 1)

O(d)

O(d)

O(d)

- Sparse graph |V| >>> d, so good for sparse graph

a b c d e

b c

c e g

d c f

e h

f i

g f i

h g i

i

14

Topological Sort

Get linear order of tasks

with dependencies

15

Topological Sort

• Given a set of tasks with precedence
constraints,

 find a linear order of the tasks

 - No topological ordering in graph with cycle

 - Possible to have many topological ordering

E

F

D

A

C

B

B

A

D

E

F

C

16

Topological Sort

• Topological sort algorithm

 - Choose a vertex v with in-degree 0

 - Output v & Remove v and all of its edges

 - Repeat until no more vertices left

 E

F

D

A

C

B

E

F

D

C

B

17

Topological Sort

A C B E D F

E

F

D

C

B

E

F

D

B

E

F

D

F

D
F

18

Topological Sort

• Topological sort Runtime

 - Choose a vertex v with in-degree 0

 - Output v & Remove v

 - Remove all of v’s edges

• Total Runtime:

Single step (No Q / Q): O(|V|)

Total (No Q / Q): O(|V|)

Total: O(|V|)

Total: O(|E|)

O(1)

O(|V|2)

O(|V|2+|E|) ~ O(|V|2) No Queue

O(|V|+|E|) Queue

19

Graph Traversal

BFS & DFS

20

Breadth First Search

• Pick the shallowest unmarked node

 - Use queue, new node go to the end

 Start with the root in the queue

B

A

D E

C

F G

Queue A

Queue B C

B

A

D E

C

F G

 Pop one out, mark it,
 put its child into the queue

21

Breadth First Search

• Pick the shallowest unmarked node

 - Use queue, new node go to the end

 Pop one out, mark it,
 put its child into the queue

B

A

D E

C

F G
Queue C D E

Queue D E F G

B

A

D E

C

F G

 Pop one out, mark it,
 put its child into the queue

22

Breadth First Search

• Pick the shallowest unmarked node

 - Use queue, new node go to the end

 Pop one out, mark it,
 put its child into the queue

B

A

D E

C

F G
Queue E F G

Queue F G

B

A

D E

C

F G

 Pop one out, mark it,
 put its child into the queue

23

Breadth First Search

• Pick the shallowest unmarked node

 - Use queue, new node go to the end

 Pop one out, mark it,
 put its child into the queue

B

A

D E

C

F G
Queue G

Queue

B

A

D E

C

F G

 Pop one out, mark it,
 put its child into the queue

24

Breadth First Search

• Pick the shallowest unmarked node

 - Use queue, new node go to the end

 The queue is empty, Done!

B

A

D E

C

F G

Queue

 - The order of traversal: A B C D E F G

 - Let b = branching factor, h = height
 Space requirement: O(bh)

25

Depth First Search

• Pick the deepest unmarked node

 - Use stack, new node go to the top

 Start with the root in the stack

B

A

D E

C

F G

Stack A

Stack B C

B

A

D E

C

F G

 Pop one out, mark it,
 put its child into the stack

26

Depth First Search

• Pick the deepest unmarked node

 - Use stack, new node go to the top

 Pop one out, mark it,
 put its child into the stack

Stack B F G

Stack B F

 Pop one out, mark it,
 put its child into the stack

B

A

D E

C

F G

B

A

D E

C

F G

27

Depth First Search

• Pick the deepest unmarked node

 - Use stack, new node go to the top

 Pop one out, mark it,
 put its child into the stack

Stack B

Stack D E

 Pop one out, mark it,
 put its child into the stack

B

A

D E

C

F G

B

A

D E

C

F G

28

Depth First Search

• Pick the deepest unmarked node

 - Use stack, new node go to the top

 Pop one out, mark it,
 put its child into the stack

Stack D

Stack

B

A

D E

C

F G

 Pop one out, mark it,
 put its child into the stack

B

A

D E

C

F G

29

Depth First Search

• Pick the deepest unmarked node

 - Use stack, new node go to the top

 The stack is empty, Done!

B

A

D E

C

F G

Stack

 - The order of traversal: A C G F B E D

 - Let b = branching factor, h = height
 Space requirement: O(b*h)

30

Find Shortest Path

Dijkstra’s Algorithm

31

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 0

B ∞

C ∞ ∞

D ∞

E ∞

F ∞ ∞

G ∞ ∞

H ∞ ∞

I ∞ ∞

1

A

A

A

4

10

1

0

Pick one with shortest
distance from source: A

-

32

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 4 A

C ∞

D 10 A

E 1 A

F ∞

G ∞

H ∞

I ∞

1

13

8

9

A

E

E

1

Pick one with shortest
distance from source: E

E

6 E

8 E

3 E

4 A

33

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 4 A 4 A

C 13 E 13 E

D 8 E 8 E

E 1 1 A 1 1 A

F 9 E

G 6 E 6 E

H 8 E

I 3 E

6

Pick one with shortest
distance from source: I

I

8 E

3 E 1

34

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 4 A

C 13 E

D 8 E 8 E

E 1 1 A 1 1 A

F 6 I 6 I

G 6 E 6 E

H 8 E 8 E

I 1 3 E 1 3 E

7

Pick one with shortest
distance from source: B

B

4 A 1

35

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 1 4 A 1 4 A

C 7 B

D 8 E 8 E

E 1 1 A 1 1 A

F 6 I

G 6 E 6 E

H 8 E 8 E

I 1 3 E 1 3 E

7

Pick one with shortest
distance from source: F

B

6 I 1

36

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 1 4 A 1 4 A

C 7 B 7 B

D 8 E

E 1 1 A 1 1 A

F 1 6 I 1 6 I

G 6 E

H 8 E

I 1 3 E 1 3 E

8

Pick one with shortest
distance from source: G

E

6 E 1

8 E

37

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 1 4 A 1 4 A

C 7 B

D 8 E 8 E

E 1 1 A 1 1 A

F 1 6 I 1 6 I

G 1 6 E 1 6 E

H 8 E 8 E

I 1 3 E 1 3 E

7

Pick one with shortest
distance from source: C

B 1

38

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 1 4 A 1 4 A

C 1 7 B 1 7 B

D 8 E

E 1 1 A 1 1 A

F 1 6 I 1 6 I

G 1 6 E 1 6 E

H 8 E

I 1 3 E 1 3 E

8

Pick one with shortest
distance from source: D

E 1

8 E

39

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path Mark Dist Path

A 1 0 - 1 0 -

B 1 4 A 1 4 A

C 1 7 B 1 7 B

D 1 8 E 1 8 E

E 1 1 A 1 1 A

F 1 6 I 1 6 I

G 1 6 E 1 6 E

H 8 E

I 1 3 E 1 3 E

8

Pick one with shortest
distance from source: H

E 1

40

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path

A 1 0 -

B 1 4 A

C 1 7 B

D 1 8 E

E 1 1 A

F 1 6 I

G 1 6 E

H 1 8 E

I 1 3 E

Done!

41

Dijkstra’s Algorithm

Source Node: A

a b c

d e f

g h I

Nod
e

Mark Dist Path

A 1 0 -

B 1 4 A

C 1 7 B

D 1 8 E

E 1 1 A

F 1 6 I

G 1 6 E

H 1 8 E

I 1 3 E

Find shortest path
from F to A

42

Dijkstra’s Algorithm

• Dijkstra’s Algorithm Runtime

 - Initializing each node
 - Pick smallest v & Mark v

 - Update cost of all
 neighbors of v

• Total Runtime:

Single step (No PQ / PQ): O(|V|)

Total (No PQ / PQ): O(|V|*log|V|)

Total (No PQ): O(|E|)

Total (PQ): O(|E|*log|V|)

O(log |V|)

O(|V|2)

O(|V|2+|E|) No Priority Queue

O((|V|+|E|)*log|v|) Priority Queue

O(|V|)

43

Dijkstra’s Algorithm

• Total Runtime:

 - Sparse graph: |V| >>> |E|, O(|V|*log|V|)

 - Dense graph: |E| >>> |V|, O(|E|*log|V|)

 Better without Priority Queue

Better with Priority Queue

=> O(|V|2*log|V|)

O(|V|2+|E|) No Priority Queue

O((|V|+|E|)*log|v|) Priority Queue

