CSE332: Data Abstractions

Additional Graph Slides

Hyeln Kim

Topics

- Graph Review
- Graph Terminologies
- Graph Representations: matrix \& list
- Topological sort
- Graph traversal: BFS, DFS
- Shortest Path: Dijkstra's Algorithm

Graphs

Graph terminology

Graphs

- G = (V, E)

Contains set of vertices and set of edges

- | V | = number of vertices
- | E | = number of edges

Max | $\mathrm{E} \mid$ for undirected graph

$$
|V|+(|V|-1)+(|V|-2)+\ldots+1=|V|(|V|+1) / 2
$$

Max | $\mathrm{E} \mid$ for directed graph

$$
|v|+|v|+|v|+\ldots+|v|=|v|^{*}|v|=|v|^{2}
$$

Graph Terms

- Path

List of vertices $\left[\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right]$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $0 \leq i<n$

- Path length = number of edges on path
- Path cost $=$ sum of all edge weights on path
- Cycle

A path that begins and ends at the same node

Undirected Graph

- Edges have no directions
-Connected
If there is a path between all pairs of vertices
- Fully Connected

If there is an edge between all pairs of vertices

Directed Graph

- Edges have direction
- Weakly Connected

If there is an undirected path between all pairs of vertices

- Strongly Connected

If there is a directed path between all pairs of vertices

- Fully Connected

If there is edge (both way) between all pairs of vertices

Graph Representation

Adjacency matrix \& Adjacency list

Graph Representation

- The 'Best one’ depends on:
- Graph density
- Common Queries

Insert an edge
Delete an edge
Find an edge
Compute in-degree of a vertex
Compute out-degree of a vertex

Adjacency Matrix

	$\mathrm{f} \backslash \mathrm{t}$	a	b	c	d	e	f	g	h	i
	a		1	1	1	1				
	b			1						
	c					1		1		
	d			1			1			
	e								1	
	f									1
	g						1			1
	h							1		1
	i									

- Space Requirement: | V |²

Adjacency Matrix

- Get in-degree: O(|V|)
- Get out-degree: O(|V|)
- Find an edge: $\mathrm{O}(1)$
- Insert an edge: $\mathrm{O}(1)$
- Delete an edge: O(1)

$\mathrm{f} \backslash \mathrm{t}$	a	b	c	d	e	f	g	h	i
a		1	1	1	1				
b			1						
c					1		1		
d			1			1			
e								1	
f									1
g						1			1
h							1		1
i									

- Dense graph |E| >>> |V|, so good for dense graph

Adjacency List

- Space Requirement: $\mathrm{O}(|\mathrm{V}|+|E|)$

Adjacency List

- Let d = ave out-degree
- Get in-degree: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Get out-degree: O(d or 1)
- Find an edge:

O(d)

- Insert an edge: O(d)
- Delete an edge: O(d)

a	b	c	d
b	C		
c	e	g	
d	C	f	
e	h		
f	i		
g	f	i	
h	g	i	
i			

- Sparse graph |V| >>> d, so good for sparse graph

Topological Sort

Get linear order of tasks
with dependencies

Topological Sort

- Given a set of tasks with precedence constraints,
find a linear order of the tasks
- No topological ordering in graph with cycle
- Possible to have many topological ordering

Topological Sort

- Topological sort algorithm
- Choose a vertex v with in-degree 0
- Output v \& Remove vand all of its edges
- Repeat until no more vertices left

Topological Sort

(F)

ACBEDF

Topological Sort

- Topological sort Runtime
- Choose a vertex v with in-degree 0 Single step (No Q / Q): Total (No Q / Q):
$\mathrm{O}\left(|\mathrm{V}|^{2}\right) \quad \mathrm{O}(|\mathrm{V}|)$
- Output v \& Remove v

Total:
O(|V|)

- Remove all of v's edges

Total:

- Total Runtime: $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right) \sim \mathrm{O}\left(|\mathrm{V}|^{2}\right)$ No Queue O(|V|+|E|) Queue

Graph Traversal

BFS \& DFS

Breadth First Search

- Pick the shallowest unmarked node
- Use queue, new node go to the end

Pop one out, mark it, put its child into the queue

Queue	B	C

Breadth First Search

- Pick the shallowest unmarked node
- Use queue, new node go to the end

Pop one out, mark it, put its child into the queue

Queue	C	D	E

Pop one out, mark it, put its child into the queue

Queue	D	E	F	G

Breadth First Search

- Pick the shallowest unmarked node
- Use queue, new node go to the end

Pop one out, mark it, put its child into the queue

Queue	E	F	G

Pop one out, mark it, put its child into the queue

$$
\begin{array}{|l|l|l|}
\hline \text { Queue } & \text { F } & \text { G } \\
\hline
\end{array}
$$

Breadth First Search

- Pick the shallowest unmarked node
- Use queue, new node go to the end

Pop one out, mark it, put its child into the queue

Queue	G

Pop one out, mark it, put its child into the queue Queue

Breadth First Search

- Pick the shallowest unmarked node
- Use queue, new node go to the end

The queue is empty, Done!

Queue

- The order of traversal: A B C D E F G
- Let $\mathrm{b}=$ branching factor, $\mathrm{h}=$ height Space requirement: $O\left(b^{h}\right)$

Depth First Search

- Pick the deepest unmarked node
- Use stack, new node go to the top

Start with the root in the stack

Stack	A

Pop one out, mark it, put its child into the stack

Stack	B	C

Depth First Search

- Pick the deepest unmarked node
- Use stack, new node go to the top

Pop one out, mark it, put its child into the stack

Stack	B	F

Depth First Search

- Pick the deepest unmarked node
- Use stack, new node go to the top

Pop one out, mark it, put its child into the stack

Depth First Search

- Pick the deepest unmarked node
- Use stack, new node go to the top

Pop one out, mark it, put its child into the stack

Stack

Depth First Search

- Pick the deepest unmarked node
- Use stack, new node go to the top

The stack is empty, Done!

Stack

- The order of traversal: A C G F B E D
- Let $\mathrm{b}=$ branching factor, $\mathrm{h}=$ height Space requirement: O(b*h)

Find Shortest Path

Dijkstra's Algorithm

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: A

Nod e	Mark	Dist	Path	Mark	Dist
Path					
A	0			4	A
B	∞				
C		∞		∞	A
D		∞		1	A
E	∞		∞		
F	∞		∞		
G	∞		∞		
H	∞				
I	∞				

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: E

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	1	0	-	1	0	A^{-}
B		4	A		13	E
C		∞			8	E
D		10	A	1	1	A
E		1	A		9	E
F		∞			6	E
G		∞			8	E
H		∞			3	E
1		∞				

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: |

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	$\mathbf{1}$	$\mathbf{0}$	-	1	0	-
B		4	A		4	A
C		13	E		13	E
D		8	E		8	E
E	$\mathbf{1}$	1	A	1	$\mathbf{6}$	A
F		9	E			
G		6	E		6	E
H		8	E		8	E
I		3	E		3	E

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: B

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	$\mathbf{1}$	$\mathbf{0}$	-	$\mathbf{1}$	0	-
B		4	A		7	B
C		13	E			
D		8	E		8	E
E	$\mathbf{1}$	1	A	1	1	A
F		6	I		6	I
G		6	E		6	E
H		8	E		8	E
I	$\mathbf{1}$	3	E	1	3	E

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: \mathbf{F}

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	1	0	-	1	0	-
B	1	4	A	1	4	A
C		7	B			
D		8	E		8	E
E	1	1	A	$\mathbf{1}$	$\mathbf{1}$	A
F		6	I			
G		6	E		6	E
H		8	E		8	E
I	1	3	E	1	3	E

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: G

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	1	0	-	1	0	-
B	1	4	A	1	4	A
C		7	B		7	B
D		8	E			
E	1	1	A	1	1	A
F	1	6	I	1	6	E
G		6	E		6	E
H		8	E			
I	1	3	E	1	3	E

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: C

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	1	0	-	1	0	-
B	1	4	A	1	4	A
C		7	B			
D		8	E		8	E
E	1	1	A	1	1	A
F	1	6	I	1	6	I
G	1	6	E	1	6	E
H		8	E		8	E
I	1	3	E	1	3	E

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: D

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	1	0	-	1	0	-
B	1	4	A	1	4	A
C	1	7	B	1	7	B
D		8	E		8	
E	1	1	A	1	1	A
F	1	6	I	1	6	I
G	1	6	E	1	6	E
H		8	E		8	
I	1	3	E	1	3	E

Dijkstra's Algorithm

Source Node: A

Pick one with shortest distance from source: H

Nod e	Mark	Dist	Path	Mark	Dist	Path
A	1	0	-	1	0	-
B	1	4	A	1	4	A
C	1	7	B	1	7	B
D	1	8	E	1	8	E
E	1	1	A	1	1	A
F	1	6	I	1	6	I
G	1	6	E	1	6	E
H		8	E			
I	1	3	E	1	3	E

Dijkstra's Algorithm

Source Node: A

Done!

Nod e	Mark	Dist	Path
A	1	0	-
B	1	4	A
C	1	7	B
D	1	8	E
E	1	1	A
F	1	6	I
G	1	6	E
H	1	8	E
I	1	3	E

Dijkstra's Algorithm

Source Node: A

Find shortest path from F to A

Nod e	Mark	Dist	Path
A	1	0	-
B	1	4	A
C	1	7	B
D	1	8	E
E	1	1	A
F	1	6	I
G	1	6	E
H	1	8	E
I	1	3	E

Dijkstra’s Algorithm

- Dijkstra's Algorithm Runtime
- Initializing each node O(|V|)
- Pick smallest v \& Mark v

Single step (No PQ / PQ): O(|V|) O(log |V|) Total (No PQ / PQ):
$\mathrm{O}\left(|\mathrm{V}|^{2}\right) \mathrm{O}\left(|\mathrm{V}|^{*} \log |\mathrm{~V}|\right)$

- Update cost of all Total (No PQ): O(|E|) neighbors of v Total (PQ): O(|E|*|og|V|)
- Total Runtime: $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$ No Priority Queue

$$
\mathrm{O}((|\mathrm{~V}|+|\mathrm{E}|) * \log |\mathrm{~V}|) \text { Priority Queue }
$$

Dijkstra’s Algorithm

- Total Runtime: $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$ No Priority Queue $\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) * \log |\mathrm{~V}|)$ Priority Queue
- Sparse graph: $\quad|\mathrm{V}| \ggg|\mathrm{E}|, \mathrm{O}\left(|\mathrm{V}|^{*} \log |\mathrm{~V}|\right)$ Better with Priority Queue
- Dense graph:
$|E| \ggg|V|, O\left(|E|^{*} \log |V|\right)$
=> O(|V| $\left.{ }^{2 *} \log |\mathrm{~V}|\right)$
Better without Priority Queue

