CSE332: Data Abstractions
Section 6

JrS Nicholas Shahan w
Winter 2015

Adapted from slides by Hye In Kim & Ruth Anderson

Today

Announcements
Questions?
Graph Review

Graph Traversals
— Breadth First Search
— Depth First Search

Announcements

Midterm is Over!

Project 2 Phase B:
— Due Tuesday February 17t 11pm

Written HW 4 part B

— Tonight 11pm

Written HW 5 is out

— Due Friday February 20t 11pm

Questions

Questions about Written Homework 4b?
Questions about Project 27

Other questions?

Graph Review

G=(V, E)
* Contains set of vertices and set of edges

— | V | = number of vertices
— | E | = number of edges

* Max | E | for undirected graph
V| +(|V|-1)+(|V]-2)+...+1 = |V|(|V]+1)/2

* Max | E | for directed graph
VI + V] + V] +..+|V] = [V[*|V]=]V]?

Graph Review

Path

* List of vertices [v, v4, ..., V,], such that
(v, vi,;) EEforall0<i<n

— Path length = number of edges on path
— Path cost = sum of all edge weights on path

Cycle

* A path that begins and ends at the same node

Graph Review: Undirected

* Edges have no directions
* Connected

— There is a path between all pairs of vertices

* Fully Connected

— There is an edge between all pairs of vertices

Graph Review: Directed

Edges have direction

Weakly Connected

— There is an undirected path between all pairs of
vertices

Strongly Connected

— There is a directed path between all pairs of
vertices

Fully Connected

— If there is edge (both way) between all pairs of
vertices

Graph Traversals

For an arbitrary graph and a starting node v, find all nodes
reachable (i.e., there exists a path) from v

— Possibly “do something” for each node (an iterator!)
* E.g. Print to output, set some field, etc.

Related:
— Is an undirected graph connected?

— Is a directed graph weakly / strongly connected?
* For strongly, need a cycle back to starting node

Basic idea:
— Keep following nodes

— But “mark” nodes after visiting them, so the traversal
terminates and processes each reachable node exactly once

Graph Traversals: Abstract ldea

traverseGraph(Node start) {
Set pending = emptySet();
pending.add(start)
mark start as visited
while(pending is not empty) {
next = pending.remove()
for each node u adjacent to next
if(u is not marked) {
mark u
pending.add(u)

Graph Traversals: Running Time

Assuming add and remove are O(1), entire traversal is O(|E|)
— Use an adjacency list representation

The order we traverse depends entirely on how add and
remove work/are implemented

— Depth-first graph search (DFS): a stack
— Breadth-first graph search (BFS): a queue
DFS and BFS are “big ideas” in computer science

— Depth: recursively explore one part before going back to the
other parts not yet explored

— Breadth: Explore areas closer to the start node first

Breadth First Search

* Pick the shallowest unmarked node
— Uses a queue, enqueue new nodes at the end

* BFS starting from node X
Order Processed:

X Mark X, and enqueue it

Breadth First Search

* Pick the shallowest unmarked node
— Uses a queue, enqueue new nodes at the end

e BFS starting from node X
Order Processed: X

/
¢
Y

@
—®

Dequeue X, process it,
mark and enqueue X’s neighbors

/ Y

Breadth First Search

* Pick the shallowest unmarked node
— Uses a queue, enqueue new nodes at the end

e BFS starting from node X
Order Processed: XY

Z
ya Dequeue Y, process it,
X\ l mark and enqueue Y’s neighbors
Y

— R R | Z

Breadth First Search

* Pick the shallowest unmarked node
— Uses a queue, enqueue new nodes at the end

e BFS starting from node X
Order Processed: XY Z

Z—W .
ya Dequeue Z, process It,
X\ l J mark and enqueue Z’s neighbors
Y —R W | R

NOTE: Do not add neighbors that have already been marked

Breadth First Search

* Pick the shallowest unmarked node
— Uses a queue, enqueue new nodes at the end

e BFS starting from node X
Order Processed: XY ZR

Z W .

Dequeue R, process it,
{ J mark and enqueue R’s neighbors
Y R W

Breadth First Search

* Pick the shallowest unmarked node
— Uses a queue, enqueue new nodes at the end

e BFS starting from node X
Order Processed: XYZR W

Z W :

Dequeue W, process it,
{ J mark and enqueue W’s neighbors
Y R

NOTE: Do not add neighbors that have already been marked

Breadth First Search

BFS(Node start) {
initialize queue g to hold start
mark start as visited
while(q is not empty) {
next = g.dequeue()// and “process”
for each node u adjacent to next ‘:,
if(u is not marked)
mark u and enqueue onto ¢

}

* Order Processed: ABCDEFGH
— A “level-order” traversal

Depth First Search

* Pick the deepest unmarked node
— Uses a stack, push new nodes on the top

* DFS starting from node X

Order Processed:

Mark X and push it

Depth First Search

* Pick the deepest unmarked node
— Uses a stack, push new nodes on the top

* DFS starting from node X

Order Processed: X

/
¢
Y

@
—®

Pop X, process it,
mark and push X's
neighbors

Depth First Search

* Pick the deepest unmarked node
— Uses a stack, push new nodes on the top

* DFS starting from node X
Order Processed: X Z

Z "W Pop Z, process it,

X/ J mark and push Z’s
\Y neighbors

NOTE: Do not add neighbors that are already
marked

Depth First Search

* Pick the deepest unmarked node
— Uses a stack, push new nodes on the top

* DFS starting from node X
Order Processed: XZ W

Z W Pop W, process it,
l J mark and push W’s
Y

2 neighbors

Depth First Search

* Pick the deepest unmarked node
— Uses a stack, push new nodes on the top

* DFS starting from node X
Order Processed: XZ W R

Z W Pop R, process it,
{ J mark and push R’s
Y

R neighbors

Depth First Search

* Pick the deepest unmarked node
— Uses a stack, push new nodes on the top

* DFS starting from node X
Order Processed: XZWRY

/.Z "W Pop Y, process it,
X { J mark and push Y’s
\ .
v R neighbors

NOTE: Do not add neighbors that are already
marked

Depth First Search: Recursive

DFS(Node start) {
mark and “process” (e.g. print) start ‘!’
for each node u adjacent to start

if u is not marked @ C

DFS(u)

Order Processed: ABDECFGH
* Exactly what we called a “pre-order traversal” for trees

* The marking is not needed here, but we need it to
support arbitrary graphs , we need a way to process
each node exactly once

Depth First Search: With a Stack

DFS2(Node start) {
initialize stack s to hold start ‘!’
mark start as visited
while(s is not empty) { @ C

next = s.pop() // and “process”
for each node u adjacent to next ‘:’ ‘E’ F
if(u is not marked)

mark u and push onto s

Order Processed: ACFHGBED
* Adifferent but perfectly fine traversal

DFS/BFS Comparison

Breadth-first search:

e Always finds shortest paths, i.e., “optimal solutions”
— Better for “what is the shortest path from x to y”

 Queue may hold O(|V|) nodes (e.g. at the bottom level of binary
tree of height h, 2" nodes in queue)

Depth-first search:

* Can use less space in finding a path

— If longest path in the graph is p and highest out-degree is d then DFS
stack never has more than d*p elements

A third approach: Iterative deepening (IDDFS):

 Try DFS but don’t allow recursion more than K levels deep.
— If that fails, increment K and start the entire search over

* Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

Our graph traversals can answer the “reachability question”:
— “Is there a path from node x to node y?”

Q: But what if we want to output the actual path?
— Like getting driving directions rather than just knowing it’s
possible to get there!
A: Like this:
— Instead of just “marking” a node, store the previous node along the

path (when processing u causes us to add v to the search, set v.path
field to be u)

— When you reach the goal, follow path fields backwards to where you
started (and then reverse the answer)

— If just wanted path length, could put the integer distance at each node
instead

