CSE 332 Data Abstractions, Winter 2015 Section 2 Worksheet

Problem 1. Find values for v and n_{0} (according to the definition of $\left.O()\right)$ for $\mathrm{f}(\mathrm{n})$ is $O(g(n))$, where:
a. $f(n)=7 n \quad g(n)=\frac{n}{10}$
b. $f(n)=1000 \quad g(n)=3 n^{3}$
c. $f(n)=7 n^{2}+3 n \quad g(n)=n^{4}$
d. $f(n)=n+2 n \log n \quad g(n)=n \log n$

Problem 2. True or false?
a. $f(n)$ is $\Theta(g(n))$ implies $f(n)$ is $O(g(n))$
b. $f(n)$ is $\Theta(g(n))$ implies $g(n)$ is $\Theta(f(n))$
c. $f(n)$ is $\Omega(g(n))$ implies $f(n)$ is $O(g(n))$

Problem 3. Find functions $f(n)$ and $g(n)$ such that $f(n)$ is $O(g(n))$ and the constant c for the definition of $O()$ must be >1. That is, find f and g such that c must be greater than 1 , as there is no sufficient n_{0} when $c=1$.

Problem 4. Write the $O()$ run-time of the functions with the following recurrence relations:
a. $T(n)=3+T(n-1)$, where $T(0)=1$
b. $T(n)=3+T(n / 2)$, where $T(1)=1$
c. $T(n)=3+T(n-1)+T(n-1)$, where $T(0)=1$

Problem 5. Prove by induction that

$$
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Problem 6. What's the $O()$ run-time of this code fragment in terms of n :
a. int $\mathrm{x}=0$;

$$
\begin{gathered}
\text { for (int } i=n ; i>=0 ; i--) \\
\text { if(}(i \% 3)==0) \text { break; } \\
\text { else } x+=n ;
\end{gathered}
$$

b. int $\mathrm{x}=0$;
for (int i = 0; i $<n$; i++)
for (int $j=0 ; j<(n * n / 3) ; j++)$
x += j;
c. int $\mathrm{x}=0$;
for (int i = 0; i <= n; i++)
for (int $j=0 ; j<(i * i) ; j++)$
x += j;

