
CSE332 Week 2 Section Worksheet Solutions 
 
Interview Question 
 
Part 1: We are storing data for 10,000 cars and I want to find the car with the best 
recommendation. We’ll do this by just looking at the number of complaints for each car in the 
system. How should I do this? 
 
 
Answer: Iterate over the whole array, O(n)  
 
 
Part 2: Find the 10 best cars 
 
 
Answer: Iterate over it 10 times :p O(n) 10 is a constant 
 
Also, have a queue of the top-10 elements, which you will push out the largest element if you 
find a small one, requires k time during each lookup from 1 to n so it’s still  
 
 
Part 3: Find the top k best cars 
 
 
Answer: Make a heap!!!!! (or sort it…). The best solutions are O(n*k) or (nlogn) 
 
You’ll probably want to discuss the tradeoff between doing k linear searches and sorting/making 
a heap. If n = 10000, then logn = 13.287, so if k ≥ 14 then heaps will probably be faster, but if 
we never expect asking for more than the top 14 cars then it’s simpler to just do more linear 
searches. 
 
Feel free to expand this more if you have the time 
  



 
Problem 1. 
Prove f(n) is O(g(n)) where  
a. 
 f(n)=7n 
 g(n)=n/10 
Solution: 
 According to the definition of O( ), we need to find positive real #’s n0 & c so that 
  f(n)<=c*g(n) for all n>=n0 
So, set one of them, solve the equation. n0=1 & c greater than or equal to 70 works. 
 
b. 
 f(n)=1000 
 g(n)=3n3 
Solution: 
 According to the definition of O( ), we need to find positive real #’s n0 & c so that 
  f(n)<=c*g(n) for all n>=n0 
 Easiest way to do this would be to set n0=1 and solve the equation. n0=1 and any c from 
334 and up works. 
 
c.  

f(n)=7n2+3n 
 g(n)=n4 
Solution: 
 According to the definition of O( ), we need to find positive real #’s n0 & c so that 
  f(n)<=c*g(n) for all n>=n0 
 Easiest way to do this would be to set n0=1 and solve the equation. We then get c=10, and 
g rises more quickly than f after that. There are many more other such solutions, just make sure 
you plug them back in to check that they work. 
 These, you could solve in a number of ways. You could also graph them and observe 
their behavior to find an appropriate value. 
 
d. 
 f(n)=n+2nlogn 
 g(n)=nlogn 
Solution: 
 n0=2 & c=3 

The values we choose do depend on the base of the log; here we’ll assume base 2 
To keep the math simple, we choose n0 of 2. Solving the equation gets us c=3. 

We could also use log base 10, and we’d get c = 3, and n0 = 10. Or n0 = 2, c=10. 
 
 
 
 
 
Problem 2 



True or false, & explain 
 
a.  f(n) is Θ(g(n)) implies f(n) is O(g(n)) 
Solution: 
 True: Based on the definition of Θ, f(n) is O(g(n)) 
 
 
b.  f(n) is Θ(g(n)) implies g(n) is Θ(f(n)) 
Solution: 
 True:  Intuitively, Θ is an equals, and so is symmetric. 
 More specifically, we know 
  f is O(g) & f is Ω(g) 
 so 
  There exist positive # c, c’, n0 & n0’ such that 
   f(n)<=cg(n) for all n>=n0 
  and 
   f(n)>=c’g(n) for all n>=n0’ 
 so 
   g(n)<=f(n)/c’ for all n>=n0’ 
  and 
   g(n)>=f(n)/c for all n>=n0 
 so g is O(f) and g is Ω(f) 

so g is Θ(f) 
c.  f(n) is Ω(g(n)) implies f(n) is O(g(n)) 
Solution: 
 False: Counter example: f(n)=n2 & g(n)=n; f(n) is Ω(g(n)), but f(n) is NOT O(g(n)) 
 
Problem 3 
Find functions f(n) and g(n) such that f(n) is O(g(n)) and the constant c for the definition of O( ) 
must be >1.  That is, find f & g such that c must be greater than 1, as there is no sufficient n0 
when c=1. 
Solution: Basically, you need to think up two functions where one is always greater than the 
other and never crosses, but if you multiply one of them by something, there is a crossing point 
where they reverse, and it will shoot up past the other function. 
 Consider 
  f(n)=n+1 
  g(n)=n 
 we know f(n) is O(g(n)); both run in linear time 

Yet f(n)>g(n) for all values of n; no n0 we pick will help with this if we set c=1. 
Instead, we need to pick c to be something else; say, 2. 
 n+1 <= 2n for n>=1 



Problem 4 
Write the O( ) run-time of the functions with the following recurrence relations 
a.  T(n)=3+T(n-1), where T(0)=1 
Solution: 
 T(n)=3+3+T(n-2)=3+3+3+T(n-3)=…=3k+T(0)=3k+1, where k=n,  
 so O(n) time. 
 
b.  T(n)=3+T(n/2) , where T(1)=1 
Solution: 
 T(n)=3+3+T(n/4)=3+3+3+T(n/8)=…=3k+T(n/2k) 

we want n/2k=1 (since we know what T(1) is), so k=log2n 
 so T(n)=3logn+1, so O(logn) time. 
 
c.  T(n)=3+T(n-1)+T(n-1) , where T(0)=1 
Solution: 
 
We can re-write T(n) as T(n) = 3+2 T(n-1) 
Then to expand T(n) 
T(n) 
= 3 + 2 (3 + 2 T(n-2)) 
= 3 + 2( 3 + 2 (3 + 2 T (n-3) ) ) 
= 3 + 2 ( 3 + 2 ( 3 + 2 (3 + 2 T (n-4)))) 
=  
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∑ = m j+1-1, we can replace the summation with 

= 12)12(3 ⋅+−⋅ kk  
And in this case, since we know that the number of iterations that occur is just n, k=n, and so 
= 324 −⋅ n  
and we see that have T(n) = 

€ 

8 ⋅ 2n , and thus T(n) is in O(2n ). 
 
Basically, since we can tell the # of calls to T( ) is doubling every time we expand it further, it 
runs in O(2n) time. 
  



Problem 5 

Prove by induction that the ∑
=

n
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First, check the base case. Set n=1, and show that the right-hand side of the equation above is 
equal to 0^2 + 1^2. 
 
Second, do the induction step. 
 
1 + 22 + 32 + ... + n2 + (n+1)2  

= + (n+1)2 

=   

=  

=  
 
The final expression, on the right, is the same as if we had substituted (n+1) for (n) in the 
original equation, and hence we have proven the equation true for the inductive case. 
 
(equation images in the solution to this problem above, courtesy of 
http://pirate.shu.edu/~wachsmut/ira/infinity/answers/sm_sq_cb.html) 
 



Problem 6 
What’s the O( ) run-time of this code fragment in terms of n: 
 
a) 
 int x=0; 
 for(int i=n;i>=0;i--) 
  if((i%3)==0) break; 
  else x+=i; 
Solution: 

At a glance we see a loop and it looks like it should be O(n); it looks like we go through  
the loop n times. 

 However, that ‘break’ makes things a bit weirder.  Consider how the loop will work for  
 any real data; we start at some n, count backwards until the value is a multiple of 3, at  

which point we break. 
So the loop’s code will run at most 3 times (not a function of n); so the whole thing is  
O(1). 

 **Recall that ‘%’ is the remainder operator; i%3 divides i by 3 and returns the remainder  
(which will be 0, 1 or 2). 
 

b) O( 3n ) 
 

Outer loop is n.  Inner loop is 
3

2n times.  Hence, the whole thing runs in 
3

3n time. Dropping the 

1/3 constant, we get O( 3n ) 
 
c)  This one is trickier. Outer loop runs in n, but inner loop runs in i*i time.  Which means the 
first time the inner loop runs, i is only 0, so the inner loop runs 0 times.  Next, i is 1, so inner 
loop runs 1 time.  Next i=2, inner loop hence runs 2i times, which is 4. Next time, i=3, inner loop 
goes 9 times. And so forth.  So the number of executions ends up being 0 + 1 + 4 + 9 + … + 2n  
times.  We can use the formula we just found in problem 5 here, to represent this summation, 

. And so, this expression is O( 3n ). 


