CSE332: Data Abstractions

Lecture 25: Minimum Spanning Trees

Ruth Anderson via Conrad Nied
Winter 2015

A quick note about Gradescope

3 i
» <
T .. s
. e v
- (R & ko
$ o8 rFlvee
. o\ .'.‘. :':I -
- . -
. * .
"ty Ve
. Al . A
i - LY Qi
s e > b Ay
- g -- ."'. -
B~y -~
Ry
- -
-
e

Everything is,bro“k=en

3/06/2015

Today’s XKCD

FIGURING OUT WHY MY HOME

SERVER KEEPS RUNNING OUT PLUGGING IT INTO A LIGHT TIMER
OF SWAP SPACE AND CRASHING: SO |T REBOOT3 EVERY 24 HOURS:

|
%

Lad
~
-y
L
—~—
A
-
-
o~
-
-~
-

SIIRFIRILLY

5 MINUVTES
WHY EVERYTHING T HAVE IS BROKEN

3/06/2015

You guys are awesome

T I Nicholas James Anderson via cs.washington.edu
@A 1o Conrad |~

O ¥ <topframe> ¥ L) Preserve log
® Uncaught TypeError: Cannot read property 'image_attachments' of undefined
> |

Gradescope fix your javascript pls

3/06/2015 4

Do you still see this?

® [cradescope | view Submic x |\ Chri
» C | @ nttps: ignments/1540, issi #Question_1.1 L a©mSOR:

< BACK TO ASSIGNMENT LIST

Homework 7 ® UNGRADI

© Submission History

Amdahl's Law: Graphing the Pain 2¢

Filter "Pack" 3r

2.1 :..... Java Code: Mapping to a Bit Vector 1

.. Prefix Tree Drawing(s) 1t

..... Java Code: Mapping from Parallel Prefix 1¢
Output to Final Output

Parallel Quicksort 2r

Resubmit >

3/06/2015 5

Announcements

« Homework 8 — the last homework! é/ //D / 4 Lé
_ due Wednesday March 11t at 11PM

* Project 3 —thedast programming project! (/
— ALLCode - Tues’March 10, 2015 11PM

— Experiments & Writeu@larch 12, 2015, 11PM

“Scheduling note”

* “We now return to our interrupted program” on graphs
— Last “graph lecture” was lecture 16
» Shortest-path problem
 Dijkstra’s algorithm for graphs with non-negative weights

* Why this strange schedule?

— Needed to do parallelism and concurrency in time for project
3 and homeworks 6, 7, and 8

« So: not the most logical order, but hopefully not a big deal

3/06/2015 7

Minimum Spanning Trees

Given an undirected graph Gv@,@ find a graph G’=(V, E’) such
that:

— E’is a subset of E J/
- |E| 1 G’ is a minimum

— G’ is connected ¢ Spaniing tree.

—
- Cuv IS minimal
(u,v)ek'

&
e) 1
Applications: \ 0 ')
« Example: Electrical wiring for a house or clock wires on a chip

« Example: A road network if you cared about asphalt cost rather
than travel time

3/06/2015

Student Activity
, Find the MST

6
v,
. %
2 12 \ 11
e
4
13
o

3/06/2015

Two Different Approaches

Prim’s Algorithn Kruskals’s Algorithm
Almost identical @ Completely different!

3/06/2015 10

Two Different Approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!

One node, grow greedily Forest of MSTs,
Union them together.

I wonder how to union...

3/06/2015 11

Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that
has the smallest cost. Here cost = cost of the edge that
connects that vertex to the known set. Pick the vertex with the
Smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

3/06/2015 12

Prim’s Algorithm vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distafce to the source >

Prim’s pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set (in other words,
the cost of the smallest edge connecting this vertex to the known
set)

— Otherwise identical
— Compare to slides in lecture 16!

3/06/2015 13

A \/\/ feaﬁ”c

/

Prim’s Algorithm for MST

N
1. For each node v, se@ and = false

2. Choose any node § (this is like your “start” vertex in Dijkstra)

a) Mark v as known /\v\o J
For each edge (v,u) with weight w: o) i &
nd 0
VV\/(W\J\

3. Whlle there are unknown nodes In the graph
a) Select the unknown node v with lowest cost
Mark v as known and add (v, v|.prev) to output (the MST)

c) For each edge (wv,u) with weight w,

u.cost = w

u.prev = v;

3/06/2015 14

vertex | known? cost prev
A - ??
B 2712 4
C 7% U A
D 27 A
Order added to known set: E 27
F ?7?
G ?7?

3/06/2015 15

Example: Find MST using Prim’s

vertex | known? cost prev
A Y 0
B 2 A
C 21| KD
D y 1 A
Order added to known set: E 27 ¢ S
A F 74| D
G 7Sl D

3/06/2015 16

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B 2 A

C T 1 D

D Y 1 A
Order added to known set: E 1 D
A, D F 82 | b

G) D

3/06/2015 17

Example: Find MST using Prim’s

Order added to known set:

A D,C

3/06/2015

vertex | known? cost prev

A Y 0

B 2 | A
C Y 1 D

D Y 1 A

E [1 D

F 2 C

G A J D

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B 1 E

C Y 1 D

D Y 1 A
Order added to known set: E % 1 D
A D,C E = 5 c

G 3 E

3/06/2015 19

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B Y 1 E

C Y 1 D

D Y 1 A
Order added to known set: E % 1 D
A D C,EB = 5 c

G 3 E

3/06/2015 20

Example: Find MST using Prim’s

vertex | known? cost prev

Order added to known set:

A,D,C EBF

Q| MmMO|0O |
<< <X
WIN |2]=
m|{O[(O|(>»|0O|m

3/06/2015 21

Example: Find MST using Prim’s

vertex | known? cost prev

A Y 0

B Y 1 E

C Y 1 D

D Y 1 A
Order added to known set: E % 1 D
é, D, C, E, B, Ff g v 5 c
AN 4 & ol G Y 3 E

3/06/2015 22

Student Activity \ Start with V,

Find MST using

Prim’s

V | Kwn |Distance

vl (T/ _

v2 Va

v3 /Z

va k)/ / v VO\I;der Declared Known:
V3 é V4 . 1o

v6 (V/J,

v7 (75 Ve Total Cost: | &

3/06/2015 23

Prim’s Analysis

« Correctness 7?
— A bit tricky
— Intuitively similar to Dijkstra
— Might return to this time permitting (unlikely)

* Run-time
— Same as Dijkstra
— O(]E|1og |V]) using a priority queue

3/06/2015

24

Kruskal’'s MST Algorithm

|ldea: Grow a forest out of edges that do not create a cycle. Pick an
edge with the smallest weight.

G=(V.E) : - \
(=7

3/06/2015 25

Kruskal’s Algorithm for MST
An edge-based greedyalgorithm

Builds MST by greedily adding edges

1. Initialize with
* _empty MST—
. all vertices marked unconnected
« all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost ed@ and mark it

b. Ifuand v are not already connected, add (u,v) tothe MST
and mark u and v as connected to each other

3/06/2015 26

U p Tre e
&
Aside: gnion-Find aka Qisjoint Set ADT

* Union(x,y) — take the union of two sets named x and y
— Given sets: {3 5,7},{4,2,8}, {9}, {1.6} = @ Y o9
—Union(s,) /_———— 3/
Result: {3,5,7,1,6}, {4,2,8}, {9},
To perform the union operation, we replace sets x and y by (x U
y)

* Find(x) — return the name of the set containing x.
_ Given sets: {3,57,1,6), {4,2,8}, {9},
— Find(d) returns 5 —’
— Find(zl)leturns 8

 We can do Union in constant time.
 We can get Find to be amortized constant time
1o06bwerst case O(log n) for an individual Find operation). 7

Kruskal’s pseudo code

void Graph: :kruskal () {
int edgesAccepted = 0;
DisjSet s (NUM VERTICES) ;

| E | bul',JLfﬂp

|E| heap ops
while (edgesAccepted < NUM VERTICES - 1ay// hgmj
e = smallest welght edge not deleted yet;
// edge e = igﬁ V)
uset = s.find(u)’ 2|E| finds
vé%&/z.s.find(v)i
if (uset '= wvset){
3

edgesAccepted++;

} °
} (7 ? |V| unions
Nl
} N S
’ /

!
3/06/2015 28

Kruskal’s pseudo code On heap of

edges
void Graph: :kruskal () { Deletemin =
int edgesAccepted = 0; log |E]|

DisjSet s (NUM VERTICES) ;

|E| heap ops

while (edgesAccepted < NUM VERTICES - 1)
e = smallest weight edge not deleted yet;
// edge e = (u, v)

uset = s.find(u); <+ 2|E| finds
vset = s.find(v);

One for each
vertex in the

if (uset != wvset) { i
edgesAccepted++; Finde=%§ v
s.unionSets (uset, vset);“~~~~~ g

} |V| unions

} [E[log [E| + 2|E[log|V[+]V] Union = O(1)

} O([E|loglE| + |[E[~O(1)) = O(IE[log|E[) = O(|E[log|V])
b/c log |E| <log|V|* = 2log|V]|

3/06/2015 29

Student Activity

Find MST using Kruskal’s

Total Cost: \ \/

 Now find the MST using Prim’s method.
e Under what conditions will these methods give the same result?

3/06/2015 30

Draw the UpTree

Nodes

Parent

Size

3/06/2015

31

Draw the UpTree

£
AN
1/
Nodes A B C D E F G H
Parent | S /53 IS & ¢ X = <
Size © = o & O o o e

3/06/2015 32

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
A,B), (C,F), (A,C)

2.
3:
d:
6
1

Output:

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 33

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
A,B), (C,F), (A,C)

2.
3:
2.
6
1

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 34

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
A,B), (C,F), (A,C)

2:
3:
2.
6
1

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 35

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
A,B), (C,F), (A,C)

2:
3:
2.
6
1

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 36

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
2: (AB).(CF), (AC)
3. (E,G)
: (D,G), (B,D)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 37

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
(A.B), (C,F), (A,C)
(E.G)
(D,G), (B,D)
(D,F)
0: (F,G)

2:
3:
9!
6:
1

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 38

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
(A.B), (CF), (AC)
(E.G)
(D,G), (B,D)
(D,F)
0: (F,G)

2:
3:
9!
6:
1

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 39

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
(A,B), (C,F), (A,C)
(E.G)
(D,G), (B,D)
(D,F)
0: (F,G)

2:
3:
9!
6:
1

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 40

Example: Find MST using Kruskal’s

Edges in sorted order:

1. (A,D), (C,D), (B,E), (D,E)
(A,B), (C,F), (A,C)
(E,G)
(D,

(

G), (B,D)
D,F)

0: (F,G)

2:
3:
9!
6:
1

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

3/06/2015 41

Correctness

Kruskal’s algorithm is clever, simple, and efficient
— But does it generate a minimum spanning tree?
— How can we prove it?

First: it generates a spanning tree

— Intuition: Graph started connected and we added every edge
that did not create a cycle

— Proof by contradiction: Suppose u and v are disconnected in
Kruskal’s result. Then there’s a path from u to v in the initial
graph with an edge we could add without creating a cycle.
But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

3/06/2015 47

The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at
some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)®
edge (call it e), there was some MST T such that F-{e} C T ...

3/06/2015 43

Staying a subset of some MST

Claim: F is a subset of one or
more MSTs for the graph

Sofar. F-{e}CT:

Two disjoint cases:

« If{e}C T: Then F C T and we're done

» Else e forms a cycle with some simple path (callitp)in T
— Must be since T is a spanning tree

3/06/2015 44

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar. F-{e}CTand
e formsacyclewithpCT \

 There must be an edge e2 on p such that e2 is not in F
— Else Kruskal would not have added e

« Claim: e2.weight == e.weight

3/06/2015 45

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar. F-{e}CT
eformsacyclewithpCT
e2onpisnotinF \

« Claim: e2.weight == e.weight
— If e2.weight > e.weight, then T is not an MST because
T-{e2}+{e} is a spanning tree with lower cost: contradiction
— If e2.weight < e.weight, then Kruskal would have already
considered e2. It would have added it since T has no cycles
and F-{e} C T. Bute2is notin F: contradiction

3/06/2015 46

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar. F-{e}CT

eformsacyclewithpCT
e2onpisnotinF \

e2.weight == e.weight

 Claim: T-{e2}+{e}is an MST
— It's a spanning tree because p-{e2}+{e} connects the same
nodes as p

— It's minimal because its cost equals cost of T, an MST
 Since F C T-{e2}+{e}, F is a subset of one or more MSTs
Done.

3/06/2015 47

Handout #2

3/06/2015

48

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
« empty MST
. all vertices marked unconnected
« all edges unmarked
2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. Ifuand v are not already connected, add (u,v) tothe MST
and mark u and v as connected to each other

49

Example: Find MST using Kruskal’s

Edges in sorted order:
1. (A,D), (C,D), (B,E), (D,E)
A,B), (C,F), (A,C)

2.
3:
d:
6
1

Output:

Note: At each step, the union/find sets are the trees in the forest

50

Aside: Union-Find aka Disjoint Set ADT

* Union(x,y) — take the union of two sets named x and y
— Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
— Union(5,1)
Result: {3,5,7,1,6}, {4,2,8}, {9},
To perform the union operation, we replace sets x and y by (x U
y)

* Find(x) — return the name of the set containing x.
— Given sets: {3,5,7,1,6}, {4,2,8}, {9},
— Find(1) returns 5
— Find(4) returns 8

 We can do Union in constant time.
 We can get Find to be amortized constant time
(worst case O(log n) for an individual Find operation). 51

Kruskal’s pseudo code

void Graph: :kruskal () {
int edgesAccepted = 0;
DisjSet s (NUM VERTICES) ;

|E| heap ops

while (edgesAccepted < NUM VERTICES - 1)
e = smallest weight edge not deleted yet;
// edge e = (u, v)

uset = s.find(u); <+ 2|E| finds
vset = s.find(v);

if (uset '= wvset){
edgesAccepted++;
s.unionSets (uset, vset);,~~~~~

} |V| unions

52

