CSE332: Data Abstractions

Lecture 25: Minimum Spanning Trees

Ruth Anderson via Conrad Nied
Winter 2015

A quick note about Gradescope

Today's XKCD

FIGURING OUT WHY MY HOME SERVER KEEPS RUNNING OUT OF SWAP SPACE AND CRASHING:

1-10 HOURS

PLUGGING IT INTO A LIGHT TIMER SO IT REBOOTS EVERY 24 HOURS:

5 MINUTES

WHY EVERTTHING I HAVE IS BROKEN

You guys are awesome

Nicholas James Anderson via cs.washington.edu
to Conrad

Gradescope fix your javascript pls

Do you still see this?

- Gradescope | View Submis \times.
C https://gradescope.com/courses/499/assignments/1540/submissions/266997\#Question_1.1

Announcements

- Homework 8 - the last homework!
- due Wednesday March $11^{\text {th }}$ at 11 PM
- Project 3 -the last programming project!
- ALLCode - Tues March 10, 2015 11PM
- Experiments \& Writeup-Thurs March 12, 2015, 1 1PM

"Scheduling note"

- "We now return to our interrupted program" on graphs
- Last "graph lecture" was lecture 16
- Shortest-path problem
- Dijkstra's algorithm for graphs with non-negative weights
- Why this strange schedule?
- Needed to do parallelism and concurrency in time for project 3 and homeworks 6, 7, and 8
- So: not the most logical order, but hopefully not a big deal

Minimum Spanning Trees

Given an undirected graph $\left.G=(4), e^{2}\right)$, find a graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that:

- E^{\prime} is a subset of E
$-\left|E^{\prime}\right|=|V|-1$
- G^{\prime} is connected

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

Student Activity

Two Different Approaches

Prim's Algorithm Almost identical to Dijkstra's

Kruskals's Algorithm
Completely different!

Two Different Approaches

Prim's Algorithm
Almost identical to Dijkstra's
One node, grow greedily

Kruskals's Algorithm Completely different!

Forest of MSTs,
Union them together.
I wonder how to union...

Prim's algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A node-based greedy algorithm

Builds MST by greedily adding nodes

Prim's Algorithm vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = distaxce to the source.
Prim's pick the unknown vertex with smallest cost where cost = distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)

- Otherwise identical
- Compare to slides in lecture 16!

Prim's Algorithm for MST

$A, V_{1}, \int_{e a t t}$

1. For each node v, set v. cost $=\infty$ and v. known $=$ false
2. Choose any node y. (this is like your "start" vertex in Dijkstra)
a) Mark vas known

$$
\begin{aligned}
& \text { Known } \\
& \text { Horijoh } \\
& \text { Unknown }
\end{aligned}
$$

b) For each edge (v, u) with weight w : set. cost=wand $[$. $\mathrm{prev}=\mathrm{v}$
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v. prev) to output (the MST)
c) For each edge (v, u) with weight w ,

Example; Find MST using Prim's

Order added to known set:

vertex	known?	cost	prev
A	l	$? ?$	
B		$? ? 2$	4
C		$? ? ~ 2$	A
D		?? l	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example: Find MST using Prim's

Order added to known set: A

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		21	$A D$
D	4	1	A
E		ج? 1	D
F		2? 6	D
G		2? 5	D

Example: Find MST using Prim's

Order added to known set: A, D

vertex	known?	cost	prev
A	Y	0	
B		2	A
C	Y	1	D
D	Y	1	A
E		1	D
F		62	D C
G		5	D

Example: Find MST using Prim's

Order added to known set: A, D, C

vertex	known?	cost	prev
A	Y	0	
B		2	$A E$
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		5 J	D E

Example: Find MST using Prim's

Order added to known set:
A, D, C, E

vertex	known?	cost	prev
A	Y	0	
B		1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Example: Find MST using Prim's

Order added to known set:
A, D, C, E, B

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Example: Find MST using Prim's

Order added to known set:
A, D, C, E, B, F

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G		3	E

Example：Find MST using Prim＇s

Order added to known set：
$\xrightarrow[\text { 个个4ヶヶ个ヶ}]{\text { A，D，C，E，B，F，G }}$

vertex	known？	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G	Y	3	E

Start with V_{1}

Find MST using Prim's

V	Kwn	Distance	path
v1	Y	-	-
v2		2	v_{1}
v3		2	v_{4}
v4	1	1	v_{1}
v5		6	v_{7}
v6		1	v_{7}
v7		4	v_{4}

Order Declared Known:

$$
\mathbf{V}_{1} V_{l}
$$

Total Cost: 16

Prim's Analysis

- Correctness ??
- A bit tricky
- Intuitively similar to Dijkstra
- Might return to this time permitting (unlikely)
- Run-time
- Same as Dijkstra
- $O(|E| \log |\mathrm{V}|)$ using a priority queue

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

$$
\mathbf{G}=(\mathbf{V}, \mathbf{E})
$$

Kruskal's Algorithm for MST

An edge-based greedyalgorithm Builds MST by greedily adding edges

1. Initialize with

- empty MST
- all vertices marked unconnected

- all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u, v) and mark it
b. If u and v are not already connected, add (u, v) to the MST and mark u and v as connected to each other
Uptreess

Aside: Union-Find aka Disjoint Set ADT

- Union($\mathbf{x , y}$) - take the union of two sets named x and y
- Given sets: $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}<$
- Union(5,1)

Result: $\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{9\}$,
To perform the union operation, we replace sets x and y by ($x \cup$ y)

- $\operatorname{Find}(\mathbf{x})$ - return the name of the set containing x.
- Given sets: $\{3, \underline{2}, 7,1,6\},\{4,2,8\},\{9\}$,
- Find(1) returns 5
- Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time

Kruskal's pseudo code

$$
|E| \text { builtheap }
$$

```
void Graph::kruskal() {
```

void Graph::kruskal() {
int edgesAccepted = 0;
DisjSet s(NUM_VERTICES);
while (edgesAccepted < NUM_VERTICES - 1) loy lE|
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset_= s.find(u)}\mp@subsup{}{}{\frac{5}{7}
vset=s.find(v) Y;
2|E| finds
if (uset != vset){
edgesAccepted++;
}

```


\section*{Kruskal's pseudo code}

On heap of edges
void Graph::kruskal() \{
int edgesAccepted \(=0\);
Deletemin = \(\log |\mathbf{E}|\) DisjSet s(NUM_VERTICES);

\section*{|E| heap ops}
```

 e = smallest weight edge not deleted yet;
    ```
    // edge e = (u, v)
    uset = s.find(u);
    vset \(=s . f i n d(v)\);
    if (uset != vset) \{
            edgesAccepted++;
            s.unionSets(uset, vset);
    \}
\}
                    \(|\mathbf{E}| \log |\mathbf{E}|+\underline{2|\mathbf{E}| \log |\mathbf{V}|+|\mathbf{V}|}\)

One for each vertex in the edge
Find \(=\log |V|\)

Union \(=\mathbf{O}(1)\)
\} \(\mathbf{O}(|\mathbf{E}| \log |\mathbf{E}|+|\mathbf{E}| \sim \mathbf{O}(\mathbf{1}))=\mathbf{O}(|\mathbf{E}| \log |\mathbf{E}|)=\mathbf{O}(|\mathbf{E}| \log |\mathbf{V}|)\)
b/c \(\log |\mathbf{E}|<\log |\mathbf{V}|^{2}=\mathbf{2 l o g}|\mathbf{V}|\)

\section*{Student Activity}

\section*{Find MST using Kruskal's}


\section*{Total Cost:}
- Now find the MST using Prim's method.
- Under what conditions will these methods give the same result?

\section*{Student Activity}

\section*{Draw the UpTree}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Nodes & A & B & C & D & E & F & G & H \\
\hline Parent & & & & & & & & \\
\hline Size & & & & & & & & \\
\hline
\end{tabular}


\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: \((A, D),(C, D),(B, E),(D, E)\)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: \((A, B),(C, F),(A, C)\)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: \((A, B),(C, F),(A, C)\)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:


Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: \((A, B),(C, F),(A, C)\)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: \((A, B),(C, F),(A, C)\)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

\section*{Correctness}

Kruskal's algorithm is clever, simple, and efficient
- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree
- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose \(u\) and \(v\) are disconnected in Kruskal's result. Then there's a path from \(u\) to \(v\) in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

\section*{The inductive proof set-up}

Let F (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: \(\mathbf{F}\) is a subset of one or more MSTs for the graph (Therefore, once \(|\mathbf{F}|=|\mathbf{V}|-1\), we have an MST.)

Proof: By induction on \(\mid \mathbf{F |}\)
Base case: \(|\mathbf{F}|=\mathbf{0}\) : The empty set is a subset of all MSTs

Inductive case: \(|\mathbf{F}|=\mathbf{k + 1}\) : By induction, before adding the \((\mathbf{k}+1)^{\text {th }}\) edge (call it e), there was some MST T such that F-\{e\} \(\subseteq \mathbf{T} .\).

\section*{Staying a subset of some MST}

Claim: \(\mathbf{F}\) is a subset of one or more MSTs for the graph

So far: \(\quad F-\{e\} \subseteq T:\)


Two disjoint cases:
- If \(\{e\} \subseteq T\) : Then \(F \subseteq T\) and we're done
- Else \(\mathbf{e}\) forms a cycle with some simple path (call it \(\mathbf{p}\) ) in T
- Must be since \(T\) is a spanning tree

\section*{Staying a subset of some MST}

Claim: \(\mathbf{F}\) is a subset of one or more MSTs for the graph

So far: \(\mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}\) and e forms a cycle with \(p \subseteq T\)

- There must be an edge \(\mathbf{e 2}\) on \(\mathbf{p}\) such that \(\mathbf{e 2}\) is not in \(\mathbf{F}\)
- Else Kruskal would not have added e
- Claim: e2.weight == e.weight

\section*{Staying a subset of some MST}

Claim: \(\mathbf{F}\) is a subset of one or more MSTs for the graph

So far: \(\quad \mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}\)
\(e\) forms a cycle with \(p \subseteq T\) e2 on \(p\) is not in \(F\)

- Claim: e2.weight == e.weight
- If e2.weight > e.weight, then \(T\) is not an MST because \(\mathrm{T}-\{\mathrm{e} 2\}+\{\mathrm{e}\}\) is a spanning tree with lower cost: contradiction
- If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and \(\mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}\). But e 2 is not in F : contradiction

\section*{Staying a subset of some MST}

Claim: \(\mathbf{F}\) is a subset of one or more MSTs for the graph

So far: \(\quad \mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}\)
\(e\) forms a cycle with \(\mathbf{p} \subseteq T\) e2 on \(p\) is not in \(F\) e2.weight \(==\) e.weight

- Claim: T-\{e2\}+\{e\} is an MST
- It's a spanning tree because \(\mathrm{p}-\{\mathrm{e} 2\}+\{\mathrm{e}\}\) connects the same nodes as p
- It's minimal because its cost equals cost of T, an MST - Since \(F \subseteq T-\{e 2\}+\{e\}, \quad F\) is a subset of one or more MSTs Done.

\section*{Handout \#2}

\section*{Kruskal's Algorithm for MST}

\section*{An edge-based greedy algorithm}

\section*{Builds MST by greedily adding edges}
1. Initialize with
- empty MST
- all vertices marked unconnected
- all edges unmarked
2. While there are still unmarked edges
a. Pick the lowest cost edge ( \(u, v\) ) and mark it
b. If \(u\) and \(v\) are not already connected, add ( \(u, v\) ) to the MST and mark \(u\) and \(v\) as connected to each other

\section*{Example: Find MST using Kruskal's}


Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

\section*{Aside: Union-Find aka Disjoint Set ADT}
- Union( \(\mathbf{x}, \mathbf{y}\) ) - take the union of two sets named \(x\) and \(y\)
- Given sets: \(\{3, \underline{5}, 7\}\), \(\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}\)
- Union(5,1)

Result: \(\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{9\}\),
To perform the union operation, we replace sets \(x\) and \(y\) by ( \(x \cup\) y)
- Find( \(\mathbf{x}\) ) - return the name of the set containing \(x\).
- Given sets: \(\{3,5,7,1,6\},\{4,2,8\},\{9\}\),
- Find(1) returns 5
- Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case \(O(\log n)\) for an individual Find operation).

\section*{Kruskal's pseudo code}
```

void Graph::kruskal() {
int edgesAccepted = 0;
DisjSet s(NUM_VERTICES);
while (edgesAccepted < NUM_VERTICES - 1)
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find (u); \longleftrightarrow 2 E| finds
vset = s.find(v);
if (uset != vset){
edgesAccepted++;
s.unionSets(uset, vset);
}
|V| unions
}
}

```
```

