

CSE332: Data Abstractions

Lecture 25: Minimum Spanning Trees

Ruth Anderson via Conrad Nied Winter 2015

A quick note about Gradescope

Today's XKCD

WHY EVERYTHING I HAVE IS BROKEN

You guys are awesome

Nicholas James Anderson via cs.washington.edu

to Conrad 🖃

Gradescope fix your javascript pls

Do you still see this?

Announcements

- Homework 8 the last homework!
 - due Wednesday March 11th at 11PM
- Project 3 the last programming project!
 - ALL Code Tues March 10, 2015 11PM
 - Experiments & Writeup Thurs March 12, 2015, 11PM

"Scheduling note"

- "We now return to our interrupted program" on graphs
 - Last "graph lecture" was lecture 16
 - Shortest-path problem
 - Dijkstra's algorithm for graphs with non-negative weights
- Why this strange schedule?
 - Needed to do parallelism and concurrency in time for project
 3 and homeworks 6, 7, and 8
- So: not the most logical order, but hopefully not a big deal

Minimum Spanning Trees

Given an undirected graph $G \neq (V, E)$, find a graph G' = (V, E') such that:

- E' is a subset of E
- $|E'| \neq |V| + 1$
- G' is connected

$$-\sum_{(u,v)\in E'} \mathbf{c}_{uv} \quad \text{is minimal}$$

$$e \Rightarrow e \Rightarrow e$$
Applications:
$$e \Rightarrow e \Rightarrow e$$

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

Two Different Approaches

Prim's Algorithm
Almost identical to Dijkstra's

Kruskals's Algorithm Completely different!

Two Different Approaches

Prim's Algorithm
Almost identical to Dijkstra's

One node, grow greedily

Kruskals's Algorithm Completely different!

Forest of MSTs,

Union them together.

I wonder how to union...

Prim's algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A node-based greedy algorithm Builds MST by greedily adding nodes

Prim's Algorithm vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.

Prim's pick the unknown vertex with smallest cost where cost = distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)

- Otherwise identical
- Compare to slides in lecture 16!

A Vi, Seattle

Prim's Algorithm for MST

- 1. For each node \mathbf{v} , set \mathbf{v} .cost = ∞ and \mathbf{v} .known = false
- 2. Choose any node v. (this is like your "start" vertex in Dijkstra)
 - a) Mark v as known
 - b) For each edge (v,u) with weight w: set u.cost=w and u.prev=v

- Knowh Horjohe Unkhair
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark **v** as known and add (**v**, **v**).**prev**) to output (the MST)
 - c) For each edge (v, u) with weight w,

```
if(w < u.cost) {
    u.cost = w;
    u.prev = v;
}</pre>
```


Order added to known set:

vertex	known?	cost	prev	
Α		??		
В		29 2	4	
С		% 5	4	
D		29]	A	
Е		??		
F		??		
G		??		

Order added to known set:

vertex	known?	cost	prev
Α	Y	0	
В		2	Α
С		21	X D
D	Y	1	Α
Е		21. 1	U
F		27.6	D
G		37.5	n

Order added to known set: A, D

vertex	known?	known? cost pr		
А	Y	0		
В		2	Α	
С	7	1	D	
D	Y	1	Α	
E		1	D	
F		8 2	D C	
G		5	D	

Order added to known set: A, D, C

vertex	known?	cost	prev	
Α	Y	0		
В		2	At	
С	Y	1	D	
D	Y	1	Α	
E	Y	1	D	
F		2	С	
G		<i>1</i> 5)	ØE	

Order added to known set: A, D, C, E

vertex	known?	cost	prev
Α	Y	0	
В	1		Е
С	Υ	1	D
D	Y	1	Α
E	Y	1	D
F		2	С
G		3	Е

Order added to known set: A, D, C, E, B

vertex	known?	cost	prev
Α	Y	0	
В	Y	Y 1 E	
С	Υ	1	D
D	Y	1	Α
E	Y	1	D
F		2	С
G		3	E

Order added to known set: A, D, C, E, B, F

vertex	known? cost		prev	
Α	Y	0		
В	Y	1	E	
С	Y	1	D	
D	Y	1	Α	
Е	Y	1	D	
F	Y	2	С	
G		3	E	

Order added to known set:

vertex	known? cost		prev
Α	Y	0	
В	Y	1	П
С	Υ	1	D
D	Y	1	Α
E	Y	1	D
F	Y	2	С
G	Y	3	E

Student Activity

Start with V_1

Find MST using Prim's

V	Kwn	Distance	path
v1	Y		l
v2		7	∨,
v3		7	Vy
v4)	1	/)
v5		6	√ ⊋
v6		(V-7
v7		4	Vy

Order Declared Known:

$$\mathbf{V}_1 \checkmark_{\iota}$$

Total Cost: 6

Prim's Analysis

- Correctness ??
 - A bit tricky
 - Intuitively similar to Dijkstra
 - Might return to this time permitting (unlikely)
- Run-time
 - Same as Dijkstra
 - O(|E|log |V|) using a priority queue

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

Kruskal's Algorithm for MST

An edge-based greedy algorithm Builds MST by greedily adding edges

- 1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the lowest cost edge (u, y) and mark it
 - b. If **u** and **v** are not already connected, add (**u**, **v**) to the MST and mark **u** and **v** as connected to each other

Aside: Union-Find aka Disjoint Set ADT

- Union(x,y) take the union of two sets named x and y
 - Given sets: $\{3,\underline{5},7\}$, $\{4,2,\underline{8}\}$, $\{\underline{9}\}$, $\{\underline{1},6\}$ $\{2,2,4\}$ $\{3,5,7,1,6\}$, $\{4,2,\underline{8}\}$, $\{9\}$, $\{9\}$,

To perform the union operation, we replace sets x and y by $(x \cup y)$

- Find(x) return the name of the set containing x.
 - Given sets: $\{3, \underline{5}, 7, 1, 6\}, \{4, 2, \underline{8}\}, \{\underline{9}\},$
 - Find(1) returns 5
 - Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be **amortized** constant time 3/06/2 worst case O(log n) for an individual Find operation).

Kruskal's pseudo code

```
void Graph::kruskal(){
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
  while (edgesAccepted < NUM_VERTICES</pre>
       = smallest weight edge not deleted yet;
    // edge e = (\dot{\mathbf{u}}, \dot{\mathbf{v}})
    uset = s.find(u);
                                                2|E| finds
    vset = s.find(v);
    if (uset != vset) {
       edgesAccepted++;
        .unionSets(uset, vset)
```

Kruskal's pseudo code

```
Deletemin =
void Graph::kruskal() {
                                                                      log |E|
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
                                                            |E| heap ops
  while (edgesAccepted < NUM_VERTICES</pre>
     e = smallest weight edge not deleted yet;
     // edge e = (u, v)
     uset = s.find(u); 
                                                     2|E| finds
                                                                   One for each
     vset = s.find(v);
                                                                   vertex in the
     if (uset != vset) {
                                                                       edge
       edgesAccepted++;
                                                                   Find = log |V|
        s.unionSets(uset, vset);
                                                  V unions
         |\mathbf{E}| \log |\mathbf{E}| + 2|\mathbf{E}| \log |\mathbf{V}| + |\mathbf{V}|
                                                                Union = O(1)
  O(|E|\log|E| + |E|\sim O(1)) = O(|E|\log|E|) = O(|E|\log|V|)
              b/c \log |E| < \log |V|^2 = 2\log |V|
```

3/06/2015

On heap of

edges

Find MST using Kruskal's

- Now find the MST using Prim's method.
- Under what conditions will these methods give the same result?

Student Activity

Draw the UpTree

Nodes	Α	В	С	D	E	F	G	Н
Parent								
Size								

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose u and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

The inductive proof set-up

Let **F** (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: **F** is a subset of *one or more* MSTs for the graph (Therefore, once |**F**|=|**V**|-**1**, we have an MST.)

Proof: By induction on |F|

Base case: **|F|=0**: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)th edge (call it **e**), there was some MST **T** such that $F-\{e\} \subseteq T$...

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: $F-\{e\} \subseteq T$:

Two disjoint cases:

- If {e} ⊆ T: Then F ⊆ T and we're done
- Else e forms a cycle with some simple path (call it p) in T
 - Must be since T is a spanning tree

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: F-{e} ⊆ T and e forms a cycle with p ⊆ T

- There must be an edge e2 on p such that e2 is not in F
 - Else Kruskal would not have added e

Claim: e2.weight == e.weight

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T
e2 on p is not in F

- Claim: e2.weight == e.weight
 - If e2.weight > e.weight, then T is not an MST because T-{e2}+{e} is a spanning tree with lower cost: contradiction
 - If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and F-{e} ⊆ T. But e2 is not in F: contradiction

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T
e2 on p is not in F
e2.weight == e.weight

- Claim: T-{e2}+{e} is an MST
 - It's a spanning tree because p-{e2}+{e} connects the same nodes as p
 - It's minimal because its cost equals cost of T, an MST
- Since F ⊆ T-{e2}+{e}, F is a subset of one or more MSTs
 Done.

Handout #2

Kruskal's Algorithm for MST

An edge-based greedy algorithm Builds MST by greedily adding edges

- Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the <u>lowest cost edge</u> (u, v) and mark it
 - b. If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Aside: Union-Find aka Disjoint Set ADT

- Union(x,y) take the union of two sets named x and y
 - Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
 - Union(5,1)

To perform the union operation, we replace sets x and y by $(x \cup y)$

- Find(x) return the name of the set containing x.
 - Given sets: {3,5,7,1,6}, {4,2,8}, {9},
 - Find(1) returns 5
 - Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case O(log n) for an individual Find operation).

Kruskal's pseudo code

```
void Graph::kruskal(){
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
                                                 |E| heap ops
  while (edgesAccepted < NUM_VERTICES</pre>
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u); 
                                           2|E| finds
    vset = s.find(v);
    if (uset != vset) {
      edgesAccepted++;
      s.unionSets(uset, vset);
```