
CSE 332: Data Abstractions

Lecture 22:

Deadlock

 Readers/Writer Locks

Ruth Anderson

Winter 2015

Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now:

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

3 3/02/2015

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

4

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Potential problems?

3/02/2015

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

5

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Notice during call to a.deposit, thread holds two locks

– Need to investigate when this may be a problem

3/02/2015

The Deadlock

6

acquire lock for x

do withdraw from x

block on lock for y

acquire lock for y

do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Suppose x and y are static fields holding accounts

Thread 2: y.transferTo(1,x)

3/02/2015

Ex: The Dining Philosophers

• 5 philosophers go out to dinner together at an Italian restaurant

• Sit at a round table; one fork per setting

• When the spaghetti comes, each philosopher proceeds to grab their

right fork, then their left fork, then eats

• ‘Locking’ for each fork results in a deadlock

3/02/2015 7

Deadlock, in general

A deadlock occurs when there are threads T1, …, Tn such that:

• For i=1,..,n-1, Ti is waiting for a resource held by T(i+1)

• Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

– Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to techniques to

ensure a cycle can never arise

8 3/02/2015

Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized

– Exposes intermediate state after withdraw before deposit

– May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing

transfers between them

– Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always acquire

locks in the same order

– Entire program should obey this order to avoid cycles

– Code acquiring only one lock can ignore the order

9 3/02/2015

Ordering locks

10

class BankAccount {

 …

 private int acctNumber; // must be unique

 void transferTo(int amt, BankAccount a) {

 if(this.acctNumber < a.acctNumber)

 synchronized(this) {

 synchronized(a) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 else

 synchronized(a) {

 synchronized(this) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 }

}
3/02/2015

Another example

From the Java standard library

11

class StringBuffer {

 private int count;

 private char[] value;

 …

 synchronized append(StringBuffer sb) {

 int len = sb.length();

 if(this.count + len > this.value.length)

 this.expand(…);

 sb.getChars(0,len,this.value,this.count);

 }

 synchronized getChars(int x, int, y,

 char[] a, int z) {

 “copy this.value[x..y] into a starting at z”

 }

}

3/02/2015

Two problems

Problem #1: Lock for sb is not held between calls to sb.length

and sb.getChars

– So sb could get longer

– Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in

opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:

– Do not want unique ids on every StringBuffer

– Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc)

– Up to clients to avoid such situations with own protocols

12 3/02/2015

Perspective

• Code like account-transfer and string-buffer append are difficult

to deal with for deadlock

• Easier case: different types of objects

– Can document a fixed order among types

– Example: “When moving an item from the hashtable to the

work queue, never try to acquire the queue lock while

holding the hashtable lock”

• Easier case: objects are in an acyclic structure

– Can use the data structure to determine a fixed order

– Example: “If holding a tree node’s lock, do not acquire other

tree nodes’ locks unless they are children in the tree”

13 3/02/2015

Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now:

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

14 3/02/2015

Reading vs. writing

Recall:

– Multiple concurrent reads of same memory: Not a problem

– Multiple concurrent writes of same memory: Problem

– Multiple concurrent read & write of same memory: Problem

So far:

– If concurrent write/write or read/write might occur, use

synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:

– Could still allow multiple simultaneous readers!

15 3/02/2015

Example

Consider a hashtable with one coarse-grained lock

– So only one thread can perform operations at a time

– Won’t allow simultaneous reads, even though it’s ok

conceptually

But suppose:

– There are many simultaneous lookup operations

– insert operations are very rare

– It’d be nice to support multiple reads; we’d do lots of waiting

otherwise

Note: Important that lookup does not actually mutate shared

memory, like a move-to-front list operation would

16 3/02/2015

Readers/writer locks

A new synchronization ADT: The readers/writer lock

• A lock’s states fall into three categories:

– “not held”

– “held for writing” by one thread

– “held for reading” by one or more threads

• new: make a new lock, initially “not held”

• acquire_write: block if currently “held for reading” or “held for

writing”, else make “held for writing”

• release_write: make “not held”

• acquire_read: block if currently “held for writing”, else

make/keep “held for reading” and increment readers count

• release_read: decrement readers count, if 0, make “not held”

17

0 writers 1

0 readers
writers*readers==0

3/02/2015

Pseudocode example (not Java)

18

class Hashtable<K,V> {

 …

 // coarse-grained, one lock for table

 RWLock lk = new RWLock();

 V lookup(K key) {

 int bucket = hasher(key);

 lk.acquire_read();

 … read array[bucket] …

 lk.release_read();

 }

 void insert(K key, V val) {

 int bucket = hasher(key);

 lk.acquire_write();

 … write array[bucket] …

 lk.release_write();

 }

}

3/02/2015

Readers/writer lock details

• A readers/writer lock implementation (“not our problem”) usually

gives priority to writers:

– Once a writer blocks, no readers arriving later will get the

lock before the writer

– Otherwise an insert could starve

• That is, it could wait indefinitely because of continuous

stream of read requests

• Re-entrant?

– Mostly an orthogonal issue

– But some libraries support upgrading from reader to writer

• Why not use readers/writer locks with more fine-grained locking,

like on each bucket?

– Not wrong, but likely not worth it due to low contention

 19 3/02/2015

In Java

Java’s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

• Different interface: methods readLock and writeLock return

objects that themselves have lock and unlock methods

• Does not have writer priority or reader-to-writer upgrading

– Always read the documentation

20 3/02/2015

Concurrency summary

• Concurrent programming allows multiple threads to access

shared resources (e.g. hash table, work queue, grid in project 3)

• Introduces new kinds of bugs:

– Data races

– Critical sections too small

– Critical sections use wrong locks

– Deadlocks

• Requires synchronization

– Locks for mutual exclusion (common, various flavors)

– Condition variables for signaling others (less common,

covered in notes)

• Guidelines for correct use help avoid common pitfalls

• Shared Memory model is not only approach, but other

approaches (e.g., message passing) are not painless

21 3/02/2015

