CSE 332: Data Abstractions

Lecture 22:
Deadlock
Readers/Writer Locks

Ruth Anderson
Winter 2015



Outline

Done:
* Programming with locks and critical sections
« Key guidelines and trade-offs

Now:

* Another common error: Deadlock

« Other common facilities useful for shared-memory concurrency
— Readers/writer locks

3/02/2015



Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;

}

Potential problems?

3/02/2015



Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;

}

Notice during call to a.deposit, thread holds two locks
— Need to investigate when this may be a problem

3/02/2015



The Deadlock

Suppose x and y are static fields holding accounts

Thread 1: x. transferTo(1,y) Thread2:y.transferTo(1,x)

acquire lock for x

do withdraw from x
acquire lock for y
do withdraw from y

Time

block on lock for x
block on lock for y

3/02/2015 6



Ex: The Dining Philosophers

5 philosophers go out to dinner together at an Italian restaurant
Sit at a round table; one fork per setting

When the spaghetti comes, each philosopher proceeds to grab their
right fork, then their left fork, then eats

‘Locking’ for each fork results in a deadlock

3/02/2015 7



Deadlock, in general

A deadlock occurs when there are threads T1, ..., Tn such that:
 Fori=1,..,n-1, Ti is waiting for a resource held by T(i+1)
« Tnis waiting for a resource held by T1

In other words, there is a cycle of waiting
— Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to techniques to
ensure a cycle can never arise

3/02/2015



Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized
— Exposes intermediate state after withdraw before deposit
— May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing
transfers between them

— Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unigue number and always acquire
locks in the same order

— Entire program should obey this order to avoid cycles
— Code acquiring only one lock can ignore the order

3/02/2015 9



Ordering locks

class BankAccount {

private int acctNumber; // must be unique
void transferTo(int amt, BankAccount a) {
if (this.acctNumber < a.acctNumber)
synchronized (this) {
synchronized(a) ({
this.withdraw (amt) ;
a.deposit(amt) ;
}}
else
synchronized(a) ({
synchronized (this) {
this.withdraw (amt) ;
a.deposit(amt) ;
}}
}

3/02/2015

10



Another example

From the Java standard library

class StringBuffer {
private int count;
private char|[] wvalue;

synchronized append(StringBuffer sb) {
int len = sb.length()
if (this.count + len > this.value.length)
this.expand(..) ;
sb.getChars (0,len,this.value, this.count) ;
}
synchronized getChars(int x, int, vy,
char[] a, int z) {
“copy this.value[x..y] into a starting at z”

}

3/02/2015 11



Two problems

Problem #1: Lock for sb is not held between calls to sb.length
and sb.getChars

— So sb could get longer
— Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in
opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:
— Do not want unique ids on every StringBuffer
— Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc)
— Up to clients to avoid such situations with own protocols

3/02/2015 12



Perspective

« Code like account-transfer and string-buffer append are difficult
to deal with for deadlock

« Easier case: different types of objects
— Can document a fixed order among types

— Example: “When moving an item from the hashtable to the
work queue, never try to acquire the queue lock while
holding the hashtable lock”

» Easier case: objects are in an acyclic structure
— Can use the data structure to determine a fixed order

— Example: “If holding a tree node’s lock, do not acquire other
tree nodes’ locks unless they are children in the tree”

3/02/2015 13



Outline

Done:
* Programming with locks and critical sections
« Key guidelines and trade-offs

Now:

* Another common error: Deadlock

« Other common facilities useful for shared-memory concurrency
— Readers/writer locks

3/02/2015

14



Reading vs. writing

Recall:
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:

— If concurrent write/write or read/write might occur, use
synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:
— Could still allow multiple simultaneous readers!

3/02/2015 15



Example

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

— Won't allow simultaneous reads, even though it's ok
conceptually

But suppose:
— There are many simultaneous lookup operations

— insert operations are very rare

— It'd be nice to support multiple reads; we’'d do lots of waiting
otherwise

Note: Important that 1lookup does not actually mutate shared
memory, like a move-to-front list operation would

3/02/2015 16



Readers/writer locks

A new synchronization ADT: The readers/writer lock

- A Io“ck S stat?s fall into three categories: 0<writers <1
— “not held O <readers
— “held for writing” by one thread writers*readers==

— “held for reading” by one or more threads

« new: make a new lock, initially “not held”

« acquire write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

* release write: make “not held”

- acquire read: block if currently “held for writing”, else
make/keep “held for reading” and increment readers count

« release read: decrementreaders count, if 0, make “not held”

3/02/2015 17



Pseudocode example (not Java)
class Hashtable<K,V> {

// coarse-grained, one lock for table
RWLock lk = new RWLock() ;
V lookup (K key) {
int bucket = hasher (key) ;
lk.acquire read();
. read array[bucket] ..
lk.release read();

}
void insert (K key, V val) {

int bucket = hasher (key) ;
lk.acquire write();

. write array[bucket] ..
lk.release write();

}
}

3/02/2015

18



Readers/writer lock detalls

A readers/writer lock implementation (“not our problem?”) usually
gives priority to writers:
— Once a writer blocks, no readers arriving later will get the
lock before the writer

— Otherwise an insert could starve

« That s, it could wait indefinitely because of continuous
stream of read requests

Re-entrant?
— Mostly an orthogonal issue
— But some libraries support upgrading from reader to writer

Why not use readers/writer locks with more fine-grained locking,
like on each bucket?

— Not wrong, but likely not worth it due to low contention

3/02/2015 19



In Java

Java’'s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

» Different interface: methods readLock and writeLock return
objects that themselves have 1lock and unlock methods

« Does not have writer priority or reader-to-writer upgrading
— Always read the documentation

3/02/2015 20



Concurrency summary

Concurrent programming allows multiple threads to access
shared resources (e.g. hash table, work queue, grid in project 3)

Introduces new kinds of bugs:

— Data races

— Critical sections too small

— Critical sections use wrong locks

— Deadlocks
Requires synchronization

— Locks for mutual exclusion (common, various flavors)

— Condition variables for signaling others (less common,
covered in notes)

Guidelines for correct use help avoid common pitfalls

Shared Memory model is not only approach, but other
approaches (e.g., message passing) are not painless

3/02/2015 21



