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Today 

• Graphs 

– Representations 

– Topological Sort 

– Graph Traversals 
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Topological Sort 

Problem: Given a DAG G=(V,E), output all the vertices in order 

such that if no vertex appears before any other vertex that has 

an edge to it 

 

Example input: 

 

 

 

 

 

 

Example output: 

     142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352 
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CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 

Disclaimer: Do not use for official advising purposes!  

(Implies that CSE 332 is a pre-req for CSE 312 – not true) 
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Questions and comments 

• Why do we perform topological sorts only on DAGs? 

 

 

• Is there always a unique answer? 

 

 

• What DAGs have exactly 1 answer? 

 

 

• Terminology: A DAG represents a partial order and a topological 

sort produces a total order that is consistent with it 
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Questions and comments 

• Why do we perform topological sorts only on DAGs? 

– Because a cycle means there is no correct answer 

 

• Is there always a unique answer? 

– No, there can be 1 or more answers; depends on the graph 

 

• What DAGs have exactly 1 answer? 

– Lists 

 

• Terminology: A DAG represents a partial order and a topological 

sort produces a total order that is consistent with it 
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Topological Sort Uses 

• Figuring out how to finish your degree 

 

• Computing the order in which to recompute cells in a 

spreadsheet 

 

• Determining the order to compile files using a Makefile 

 

• In general, taking a dependency graph and coming up with an 

order of execution  
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A First Algorithm for Topological Sort 

1. Label (“mark”) each vertex with its in-degree 

– Think “write in a field in the vertex” 

– Could also do this via a data structure (e.g., array) on the side 

 

2. While there are vertices not yet output: 

a) Choose a vertex v with labeled with in-degree of 0 

b) Output v and conceptually remove it from the graph 

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u 
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Example Output:  
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed? 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126  
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142  
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1 

                                    0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143  
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0               0                      0      0 

                                    0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311  
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0             0      0 

                                    0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x               x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0             0      0 

                                    0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x               x       x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0              0 

                                    0              0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 

     312 
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0              0 

                                    0              0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 

     312 

               341 
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x              x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0              0 

                                    0              0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 

     312 

               341 

    351 

2/09/2015 19 

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x              x      x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0      0      0 

                                    0              0                       0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example 
Output:  126 

               142 

               143 

               311 

               331 

               332 

               312 

               341 

               351 

               333 

               352 

               440  
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Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x     x       x      x      x      x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0      0      0 

                                    0              0                       0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



A couple of things to note 

• Needed a vertex with in-degree of 0 to start 

– No cycles 

• Ties between vertices with in-degrees of 0 can be broken 

arbitrarily 

– Potentially many different correct orders 
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Topological Sort: Running time? 
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  labelEachVertexWithItsInDegree(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = findNewVertexOfDegreeZero(); 

    put v next in output 

   for each w adjacent to v 

      w.indegree--; 

  } 



Topological Sort: Running time? 

• What is the worst-case running time? 

– Initialization O(|V| + |E|) (assuming adjacency list) 

– Sum of all find-new-vertex O(|V|2) (because each O(|V|)) 

– Sum of all decrements O(|E|) (assuming adjacency list) 

– So total is O(|V|2 + |E|) – not good for a sparse graph! 
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  labelEachVertexWithItsInDegree(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = findNewVertexOfDegreeZero(); 

    put v next in output 

   for each w adjacent to v 

      w.indegree--; 

  } 



Doing better 

The trick is to avoid searching for a zero-degree node every time! 

– Keep the “pending” zero-degree nodes in a list, stack, 

queue, box, table, or something 

– Order we process them affects output but not correctness or 

efficiency provided add/remove are both O(1) 
 

Using a queue: 
 

1. Label each vertex with its in-degree, enqueue 0-degree nodes 

2. While queue is not empty 

a)  v = dequeue() 

b) Output v and remove it from the graph 

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 

decrement the in-degree of u, if new degree is 0, enqueue it 
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Topological Sort(optimized): Running time? 

  labelAllAndEnqueueZeros(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = dequeue(); 

    put v next in output 

   for each w adjacent to v { 

      w.indegree--; 

      if(w.indegree==0)  

        enqueue(w); 

    } 

  } 
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Topological Sort(optimized): Running time? 

  labelAllAndEnqueueZeros(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = dequeue(); 

    put v next in output 

   for each w adjacent to v { 

      w.indegree--; 

      if(w.indegree==0)  

        enqueue(w); 

    } 

  } 

• What is the worst-case running time? 

– Initialization: O(|V|+|E|) (assuming adjacenty list) 

– Sum of all enqueues and dequeues: O(|V|) 

– Sum of all decrements: O(|E|) (assuming adjacency list) 

– So total is O(|E| + |V|) – much better for sparse graph! 
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Graph Traversals 

Next problem: For an arbitrary graph and a starting node v, find all 

nodes reachable (i.e., there exists a path) from v  

– Possibly “do something” for each node (an iterator!) 

• E.g. Print to output, set some field, etc. 

Related: 

• Is an undirected graph connected? 

• Is a directed graph weakly / strongly connected? 

– For strongly, need a cycle back to starting node 

 

Basic idea:  

– Keep following nodes 

– But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once 
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Graph Traversal: Abstract Idea 

  traverseGraph(Node start) { 

    Set pending = emptySet(); 

    pending.add(start) 

     mark start as visited 

     while(pending is not empty) { 

       next = pending.remove() 

       for each node u adjacent to next 

          if(u is not marked) { 

            mark u 

            pending.add(u) 

          } 

     } 

  } 
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Running time and options 

• Assuming add and remove are O(1), entire traversal is O(|E|) 

• Use an adjacency list representation 

 

• The order we traverse depends entirely on how add and remove 

work/are implemented 

– Depth-first graph search (DFS): a stack  

– Breadth-first graph search (BFS): a queue  

 

• DFS and BFS are “big ideas” in computer science 

– Depth: recursively explore one part before going back to the 

other parts not yet explored 

– Breadth: Explore areas closer to the start node first 
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Recursive DFS, Example : trees 

• A tree is a graph and DFS and BFS are particularly easy to “see”  

2/09/2015 30 

A 

B 

D E 

C 

F 

H G 

DFS(Node start) { 

  mark and “process”(e.g. print) start 

  for each node u adjacent to start 

    if u is not marked 

      DFS(u) 

} 

Order processed: A, B, D, E, C, F, G, H 

• Exactly what we called a “pre-order traversal” for trees 

• The marking is not needed here, but we need it to support arbitrary 

graphs , we need a way to process each node exactly once 

 



DFS with a stack, Example: trees 
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A 

B 

D E 

C 

F 

H G 

DFS2(Node start) { 

  initialize stack s to hold start 

  mark start as visited 

  while(s is not empty) { 

    next = s.pop() // and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and push onto s 

  } 

} 

Order processed:  

• A different but perfectly fine traversal 

 



DFS with a stack, Example: trees 
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A 

B 

D E 

C 

F 

H G 

DFS2(Node start) { 

  initialize stack s to hold start 

  mark start as visited 

  while(s is not empty) { 

    next = s.pop() // and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and push onto s 

  } 

} 

Order processed: A, C, F, H, G, B, E, D 

• A different but perfectly fine traversal 

 



BFS with a queue, Example: trees 
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A 

B 

D E 

C 

F 

H G 

BFS(Node start) { 

  initialize queue q to hold start 

  mark start as visited 

  while(q is not empty) { 

    next = q.dequeue()// and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and enqueue onto q 

  } 

} 

Order processed:  

• A “level-order” traversal 

 



BFS with a queue, Example: trees 
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A 

B 

D E 

C 

F 

H G 

BFS(Node start) { 

  initialize queue q to hold start 

  mark start as visited 

  while(q is not empty) { 

    next = q.dequeue()// and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and enqueue onto q 

  } 

} 

Order processed: A, B, C, D, E, F, G, H 

• A “level-order” traversal 

 



DFS/BFS Comparison 

Breadth-first search: 

• Always finds shortest paths, i.e., “optimal solutions 

– Better for “what is the shortest path from x to y” 

• Queue may hold O(|V|) nodes (e.g. at the bottom level of binary tree 

of height h, 2h nodes in queue) 
 

Depth-first search: 

• Can use less space in finding a path 

– If longest path in the graph is p and highest out-degree is d then 

DFS stack never has more than d*p elements 
 

A third approach: Iterative deepening (IDDFS):  

– Try DFS but don’t allow recursion more than K levels deep.   

– If that fails, increment K and start the entire search over 

• Like BFS, finds shortest paths.  Like DFS, less space. 
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Saving the path 

• Our graph traversals can answer the “reachability question”: 

– “Is there a path from node x to node y?” 
 

• Q: But what if we want to output the actual path? 

– Like getting driving directions rather than just knowing it’s 

possible to get there! 
 

• A: Like this:  

– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u) 

– When you reach the goal, follow path fields backwards to 

where you started (and then reverse the answer) 

– If just wanted path length, could put the integer distance at 

each node instead 
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Example using BFS 
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Seattle 

San Francisco 

Dallas 

Salt Lake City 

What is a path from Seattle to Austin 

–   Remember marked nodes are not re-enqueued 

–   Note shortest paths may not be unique 

Chicago 

Austin 



Example using BFS 
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Seattle 

San Francisco 

Dallas 

Salt Lake City 

What is a path from Seattle to Austin 

–   Remember marked nodes are not re-enqueued 

–   Note shortest paths may not be unique 

Chicago 

Austin 

1 

1 

1 

2 

3 

0 


