
CSE 332: Data Abstractions

Lecture 15: Topological Sort / Graph Traversals

Ruth Anderson

Winter 2015

Today

• Graphs

– Representations

– Topological Sort

– Graph Traversals

2/09/2015 3

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order

such that if no vertex appears before any other vertex that has

an edge to it

Example input:

Example output:

 142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

2/09/2015 4

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Disclaimer: Do not use for official advising purposes!

(Implies that CSE 332 is a pre-req for CSE 312 – not true)

2/09/2015

1

3

4

2

0

Valid Topological

Sorts:

5

Questions and comments

• Why do we perform topological sorts only on DAGs?

• Is there always a unique answer?

• What DAGs have exactly 1 answer?

• Terminology: A DAG represents a partial order and a topological

sort produces a total order that is consistent with it

2/09/2015 6

Questions and comments

• Why do we perform topological sorts only on DAGs?

– Because a cycle means there is no correct answer

• Is there always a unique answer?

– No, there can be 1 or more answers; depends on the graph

• What DAGs have exactly 1 answer?

– Lists

• Terminology: A DAG represents a partial order and a topological

sort produces a total order that is consistent with it

2/09/2015 7

Topological Sort Uses

• Figuring out how to finish your degree

• Computing the order in which to recompute cells in a

spreadsheet

• Determining the order to compile files using a Makefile

• In general, taking a dependency graph and coming up with an

order of execution

2/09/2015 8

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree

– Think “write in a field in the vertex”

– Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of 0

b) Output v and conceptually remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u

2/09/2015 9

Example Output:

2/09/2015 10

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

2/09/2015 11

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

2/09/2015 12

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

 143

2/09/2015 13

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

 143

 311

2/09/2015 14

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

 143

 311

 331

2/09/2015 15

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

 143

 311

 331

 332

2/09/2015 16

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

 143

 311

 331

 332

 312

2/09/2015 17

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

 143

 311

 331

 332

 312

 341

2/09/2015 18

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example Output: 126

 142

 143

 311

 331

 332

 312

 341

 351

2/09/2015 19

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

Example
Output: 126

 142

 143

 311

 331

 332

 312

 341

 351

 333

 352

 440

2/09/2015 20

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…

A couple of things to note

• Needed a vertex with in-degree of 0 to start

– No cycles

• Ties between vertices with in-degrees of 0 can be broken

arbitrarily

– Potentially many different correct orders

2/09/2015 21

Topological Sort: Running time?

2/09/2015 22

 labelEachVertexWithItsInDegree();

 for(ctr=0; ctr < numVertices; ctr++){

 v = findNewVertexOfDegreeZero();

 put v next in output

 for each w adjacent to v

 w.indegree--;

 }

Topological Sort: Running time?

• What is the worst-case running time?

– Initialization O(|V| + |E|) (assuming adjacency list)

– Sum of all find-new-vertex O(|V|2) (because each O(|V|))

– Sum of all decrements O(|E|) (assuming adjacency list)

– So total is O(|V|2 + |E|) – not good for a sparse graph!

2/09/2015 23

 labelEachVertexWithItsInDegree();

 for(ctr=0; ctr < numVertices; ctr++){

 v = findNewVertexOfDegreeZero();

 put v next in output

 for each w adjacent to v

 w.indegree--;

 }

Doing better

The trick is to avoid searching for a zero-degree node every time!

– Keep the “pending” zero-degree nodes in a list, stack,

queue, box, table, or something

– Order we process them affects output but not correctness or

efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes

2. While queue is not empty

a) v = dequeue()

b) Output v and remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u, if new degree is 0, enqueue it

2/09/2015 24

Topological Sort(optimized): Running time?

 labelAllAndEnqueueZeros();

 for(ctr=0; ctr < numVertices; ctr++){

 v = dequeue();

 put v next in output

 for each w adjacent to v {

 w.indegree--;

 if(w.indegree==0)

 enqueue(w);

 }

 }

2/09/2015 25

Topological Sort(optimized): Running time?

 labelAllAndEnqueueZeros();

 for(ctr=0; ctr < numVertices; ctr++){

 v = dequeue();

 put v next in output

 for each w adjacent to v {

 w.indegree--;

 if(w.indegree==0)

 enqueue(w);

 }

 }

• What is the worst-case running time?

– Initialization: O(|V|+|E|) (assuming adjacenty list)

– Sum of all enqueues and dequeues: O(|V|)

– Sum of all decrements: O(|E|) (assuming adjacency list)

– So total is O(|E| + |V|) – much better for sparse graph!

 2/09/2015 26

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all

nodes reachable (i.e., there exists a path) from v

– Possibly “do something” for each node (an iterator!)

• E.g. Print to output, set some field, etc.

Related:

• Is an undirected graph connected?

• Is a directed graph weakly / strongly connected?

– For strongly, need a cycle back to starting node

Basic idea:

– Keep following nodes

– But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

2/09/2015 27

Graph Traversal: Abstract Idea

 traverseGraph(Node start) {

 Set pending = emptySet();

 pending.add(start)

 mark start as visited

 while(pending is not empty) {

 next = pending.remove()

 for each node u adjacent to next

 if(u is not marked) {

 mark u

 pending.add(u)

 }

 }

 }

2/09/2015 28

Running time and options

• Assuming add and remove are O(1), entire traversal is O(|E|)

• Use an adjacency list representation

• The order we traverse depends entirely on how add and remove

work/are implemented

– Depth-first graph search (DFS): a stack

– Breadth-first graph search (BFS): a queue

• DFS and BFS are “big ideas” in computer science

– Depth: recursively explore one part before going back to the

other parts not yet explored

– Breadth: Explore areas closer to the start node first

2/09/2015 29

Recursive DFS, Example : trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

2/09/2015 30

A

B

D E

C

F

H G

DFS(Node start) {

 mark and “process”(e.g. print) start

 for each node u adjacent to start

 if u is not marked

 DFS(u)

}

Order processed: A, B, D, E, C, F, G, H

• Exactly what we called a “pre-order traversal” for trees

• The marking is not needed here, but we need it to support arbitrary

graphs , we need a way to process each node exactly once

DFS with a stack, Example: trees

2/09/2015 31

A

B

D E

C

F

H G

DFS2(Node start) {

 initialize stack s to hold start

 mark start as visited

 while(s is not empty) {

 next = s.pop() // and “process”

 for each node u adjacent to next

 if(u is not marked)

 mark u and push onto s

 }

}

Order processed:

• A different but perfectly fine traversal

DFS with a stack, Example: trees

2/09/2015 32

A

B

D E

C

F

H G

DFS2(Node start) {

 initialize stack s to hold start

 mark start as visited

 while(s is not empty) {

 next = s.pop() // and “process”

 for each node u adjacent to next

 if(u is not marked)

 mark u and push onto s

 }

}

Order processed: A, C, F, H, G, B, E, D

• A different but perfectly fine traversal

BFS with a queue, Example: trees

2/09/2015 33

A

B

D E

C

F

H G

BFS(Node start) {

 initialize queue q to hold start

 mark start as visited

 while(q is not empty) {

 next = q.dequeue()// and “process”

 for each node u adjacent to next

 if(u is not marked)

 mark u and enqueue onto q

 }

}

Order processed:

• A “level-order” traversal

BFS with a queue, Example: trees

2/09/2015 34

A

B

D E

C

F

H G

BFS(Node start) {

 initialize queue q to hold start

 mark start as visited

 while(q is not empty) {

 next = q.dequeue()// and “process”

 for each node u adjacent to next

 if(u is not marked)

 mark u and enqueue onto q

 }

}

Order processed: A, B, C, D, E, F, G, H

• A “level-order” traversal

DFS/BFS Comparison

Breadth-first search:

• Always finds shortest paths, i.e., “optimal solutions

– Better for “what is the shortest path from x to y”

• Queue may hold O(|V|) nodes (e.g. at the bottom level of binary tree

of height h, 2h nodes in queue)

Depth-first search:

• Can use less space in finding a path

– If longest path in the graph is p and highest out-degree is d then

DFS stack never has more than d*p elements

A third approach: Iterative deepening (IDDFS):

– Try DFS but don’t allow recursion more than K levels deep.

– If that fails, increment K and start the entire search over

• Like BFS, finds shortest paths. Like DFS, less space.

2/09/2015 35

Saving the path

• Our graph traversals can answer the “reachability question”:

– “Is there a path from node x to node y?”

• Q: But what if we want to output the actual path?

– Like getting driving directions rather than just knowing it’s

possible to get there!

• A: Like this:

– Instead of just “marking” a node, store the previous node

along the path (when processing u causes us to add v to the
search, set v.path field to be u)

– When you reach the goal, follow path fields backwards to

where you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at

each node instead

2/09/2015 36

Example using BFS

2/09/2015 37

Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Austin

– Remember marked nodes are not re-enqueued

– Note shortest paths may not be unique

Chicago

Austin

Example using BFS

2/09/2015 38

Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Austin

– Remember marked nodes are not re-enqueued

– Note shortest paths may not be unique

Chicago

Austin

1

1

1

2

3

0

