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Announcements 

• Homework 2 – due tonight! 

• Project 2 – Partner selection due tonight. 

• Homework 3 – due next Wednesday 
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Today 

• Dictionaries 

– B-Trees 
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Our goal 

 

• Problem: A dictionary with so much data most of it is on disk 

 

• Desire: A balanced tree (logarithmic height) that is even 

shallower than AVL trees so that we can minimize disk 

accesses and exploit disk-block size 

 

• A key idea: Increase the branching factor of our tree 
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M-ary Search Tree 

 

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4) 

 

What is the height of this tree? 

What is the worst case running time of find? 
 

• Build some sort of search tree with branching factor M: 

– Have an array of sorted children (Node[]) 

– Choose M to fit snugly into a disk block (1 access for array) 
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M-ary Search Tree 

• # hops for find? 

– If we have a balanced M-ary tree: 

– Approx. logM n hops instead of log2 n (for balanced BST) 

– Example: M = 256 (=28) and n = 240 that’s 5 hops instead of 40 hops 

• Sounds good, but how do we decide which branch to take? 

– Binary tree: Less than/greater than node value? 

– M-ary: In range 1? In range 2? In range 3?... In range M? 

• Runtime of find if balanced: O(log2 M logM n) 

– logM n is the height we traverse.  

– log2M: At each step, find the correct child branch to take using binary 

search among the M options! 
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Questions about M-ary search trees 

• What should the order property be? 

• How would you rebalance (ideally without more disk accesses)? 

• Storing real data at inner-nodes (like we do in a BST) seems kind of 

wasteful… 

– To access the node, will have to load the data from disk,  

even though most of the time we won’t use it!! 

– Usually we are just “passing through” a node on the way to the 

value we are actually looking for. 

 

So let’s use the branching-factor idea, but for a different kind of 

balanced tree: 

– Not a binary search tree 

– But still logarithmic height for any M > 2 
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B+ Trees (we and the book say “B Trees”) 

• Two types of nodes: internal nodes 

& leaves 

• Each internal node has room for up 

to M-1 keys and M children 

– No other data; all data at the 

leaves! 

• Order property: 

Subtree between keys a and b 

contains only data that is  a     

and < b  (notice the ) 

• Leaf nodes have up to L sorted data 

items 

• As usual, we’ll ignore the “along for 

the ride” data in our examples 

– Remember no data at non-leaves 
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Remember: 

•Leaves store data 

•Internal nodes are  

     ‘signposts’ 

 



Find 

• Different from BST in that we don’t store data at internal nodes 

 

• But find is still an easy root-to-leaf recursive algorithm 

– At each internal node do binary search on (up to) M-1 keys to 

find the branch to take 

– At the leaf do binary search on the (up to) L data items 

 

• But to get logarithmic running time, we need a balance condition… 
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Structure Properties 

• Root (special case) 

– If tree has  L items, root is a leaf (occurs when starting up, 

otherwise unusual) 

– Else has between 2 and M children 

 

• Internal nodes 

– Have between M/2 and M children, i.e., at least half full 

 

• Leaf nodes 

– All leaves at the same depth 

– Have between L/2 and L data items, i.e., at least half full 

 

Any M > 2 and L will work, but: 

  We pick M and L based on disk-block size 

1/23/2015 10 



Example 
Suppose M=4 (max # pointers in internal node) 

    and L=5 (max # data items at leaf) 

– All internal nodes have at least 2 children 

– All leaves have at least 3 data items (only showing keys) 

– All leaves at same depth 
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Balanced enough 

Not hard to show height h is logarithmic in number of data items n 

 

• Let M > 2 (if M = 2, then a list tree is legal – no good!) 

 

• Because all nodes are at least half full (except root may have 

only 2 children) and all leaves are at the same level, the 

minimum number of data items n for a height h>0 tree is… 

   

                 n     2  M/2 h-1  L/2 
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minimum number 

 of leaves 

minimum data  

per leaf 



Example: B-Tree vs. AVL Tree 

Suppose we have 100,000,000 items 

 

 

• Maximum height of AVL tree? 

 

 

 

• Maximum height of B tree with M=128 and L=64? 
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Example: B-Tree vs. AVL Tree 

Suppose we have 100,000,000 items 

 

 

• Maximum height of AVL tree? 

– Recall S(h) = 1 + S(h-1) + S(h-2) 

– lecture7.xlsx reports: 37 

 

 

• Maximum height of B tree with M=128 and L=64? 

– Recall (2  M/2 h-1) L/2 

– lecture9.xlsx reports: 5 (and 4 is more likely) 

– Also not difficult to compute via algebra 
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Disk Friendliness 

What makes B trees so disk friendly? 

 

• Many keys stored in one internal node 

– All brought into memory in one disk access 

• IF we pick M wisely 

– Makes the binary search over M-1 keys totally worth it 

(insignificant compared to disk access times) 

 

• Internal nodes contain only keys 

– Any find wants only one data item; wasteful to load 

unnecessary items with internal nodes 

– So only bring one leaf of data items into memory 

– Data-item size doesn’t affect what M is 
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Maintaining balance 

• So this seems like a great data structure (and it is) 

 

• But we haven’t implemented the other dictionary operations yet 

– insert 

– delete 

 

• As with AVL trees, the hard part is maintaining structure properties 

– Example: for insert, there might not be room at the correct 

leaf 
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Building a B-Tree (insertions) 
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The empty B-

Tree (the root 

will be a leaf at 

the beginning) 

M = 3 L = 3 

Insert(3) Insert(18)   

  

  

Insert(14) 
  

  

  

  

  

  3 3 

18 

3 

14 

18 

Just need to keep data 

in order 



Insert(30) 
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M = 3 L = 3 
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30 
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18 

•When we ‘overflow’ a leaf, we split it into 2 leaves 

•Parent gains another child 

•If there is no parent (like here), we create one; how do we pick the key 

shown in it? 

•Smallest element in right tree 

??? 



Insert(32) 
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Split leaf again 



Insert(16) 
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Split the internal node 

(in this case, the root) 

What 

now? 



Insert(12,40,45,38) 
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M = 3 L = 3 
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Note: Given the leaves and the structure of the tree, we 

can always fill in internal node keys; 

‘the smallest value in my right branch’ 



Insertion Algorithm 

1. Insert the data in its leaf in sorted order 

 

2. If the leaf now has L+1 items, overflow! 

– Split the leaf into two nodes: 

• Original leaf with (L+1)/2  smaller items 

• New leaf with (L+1)/2 = L/2 larger items 

– Attach the new child to the parent 

• Adding new key to parent in sorted order 

 

3. If step (2) caused the parent to have M+1 children, overflow! 

– … 
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Insertion algorithm continued 

3. If an internal node has M+1 children 

– Split the node into two nodes 

• Original node with (M+1)/2  smaller items 

• New node with (M+1)/2 = M/2 larger items 

– Attach the new child to the parent 

• Adding new key to parent in sorted order 

 

Splitting at a node (step 3) could make the parent overflow too 

– So repeat step 3 up the tree until a node doesn’t overflow 

– If the root overflows, make a new root with two children 

• This is the only case that increases the tree height 
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Efficiency of insert 

• Find correct leaf: O(log2 M logM n) 

• Insert in leaf:  O(L) 

• Split leaf: O(L) 

• Split parents all the way up to root: O(M logM n) 

 

Total: O(L + M logM n) 

 

But it’s not that bad: 

– Splits are not that common (only required when a node is FULL, 

M and L are likely to be large, and after a split, will be half empty) 

– Splitting the root is extremely rare 

– Remember disk accesses were the name of the game: 

 O(logM n) 
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B-Tree Reminder: Another dictionary 

• Before we talk about deletion, just keep in mind overall idea: 

– Large data sets won’t fit entirely in memory 

– Disk access is slow 

– Set up tree so we do one disk access per node in tree 

– Then our goal is to keep tree shallow as possible 

– Balanced binary tree is a good start, but we can do better 

than log2n height 

– In an M-ary tree, height drops to logMn 

• Why not set M really really high?  Height 1 tree… 

• Instead, set M so that each node fits in a disk block 
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And Now for Deletion… 

M = 3 L = 3 

36 

38 

1/23/2015 26 

Easy case: Leaf still has enough data; just remove 



Delete(15) 
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M = 3 L = 3 
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Is there a problem? 
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Adopt from neighbor! 



Delete(16) 
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Is there a problem? 
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Merge with neighbor! 

But hey, Is there a problem? 
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Adopt from neighbor! 
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Delete(14) 



Delete(18) 
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Is there a problem? 
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Merge with neighbor! 

But hey, Is there a problem? 
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M = 3 L = 3 
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Merge with neighbor! 

But hey, Is there a problem? 
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Pull out the root! 



Deletion Algorithm, part 1 

1. Remove the data from its leaf 

 

2. If the leaf now has L/2 - 1, underflow! 

– If a neighbor has >  L/2 items, adopt and update parent 

– Else merge node with neighbor 

• Guaranteed to have a legal number of items 

• Parent now has one less node 

 

3. If step (2) caused the parent to have M/2 - 1 children, 

underflow! 

– … 
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Deletion algorithm (continued) 

3. If an internal node has M/2 - 1 children 

– If a neighbor has >  M/2 items, adopt and update parent 

– Else merge node with neighbor 

• Guaranteed to have a legal number of items 

• Parent now has one less node, may need to continue 

up the tree 

 

If we merge all the way up through the root, that’s fine unless the 

root went from 2 children to 1 

– In that case, delete the root and make child the root 

– This is the only case that decreases tree height 
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Worst-Case Efficiency of Delete 

• Find correct leaf:    O(log2 M logM n) 

• Remove from leaf:     O(L) 

• Adopt from or merge with neighbor:  O(L) 

• Adopt or merge all the way up to root: O(M logM n) 

 

Total:  O(L + M logM n) 

 

But it’s not that bad: 

– Merges are not that common 

– Disk accesses are the name of the game: O(logM n) 
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Insert vs delete comparison 

Insert 

• Find correct leaf: 

• Insert in leaf: 

• Split leaf: 

• Split parents all the way up to root: 

 

Delete 

• Find correct leaf: 

• Remove from leaf: 

• Adopt/merge from/with neighbor leaf: 

• Adopt or merge all the way up to root: 

 

 

 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 

 

 

O(log2 M logM n) 

O(L) 

O(L) 

O(M logM n) 

 

 
1/23/2015 40 



 B Trees in Java? 

For most of our data structures, we have encouraged writing high-

level, reusable code, such as in Java with generics 

 

It is worthwhile to know enough about “how Java works” to 

understand why this is probably a bad idea for B trees 

– If you just want a balanced tree with worst-case logarithmic 

operations, no problem 

• If M=3, this is called a 2-3 tree  

• If M=4, this is called a 2-3-4 tree 

– Assuming our goal is efficient number of disk accesses 

• Java has many advantages, but it wasn’t designed for this 

 

The key issue is extra levels of indirection… 
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Naïve approach in Java 

Even if we assume data items have int keys, you cannot get the 

data representation you want for “really big data”  

interface Keyed { 
  int getKey(); 
} 
class BTreeNode<E implements Keyed> { 
  static final int M = 128; 
  int[]          keys        = new int[M-1]; 
  BTreeNode<E>[] children    = new BTreeNode[M]; 
  int            numChildren = 0; 
  … 
} 
class BTreeLeaf<E implements Keyed> { 
  static final int L = 32; 
  E[] data     = (E[])new Object[L]; 
  int numItems = 0; 
  … 
} 
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What that looks like in Java 
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BTreeNode  (Interior node)  

12 20 45 

70 

BTreeLeaf  (Leaf node) 

20 

(array of M-1 ints) 

(array of M refs to  

   BTreeNodes) 

(array of L refs to  

   data objects) 

All the red references indicate 

“unnecessary” indirection that 

might be avoided in another 

programming language. 

numChildren 

children 

keys 

numItems 

data 

Note: data objects  

not in contiguous  

memory. 

… 

… 

… 



The moral 

• The whole idea behind B trees was to keep related data in 

contiguous memory 
 

 

• But that’s “the best you can do” in Java 

– Again, the advantage is generic, reusable code 

– But for your performance-critical web-index, not the way to 

implement your B-Tree for terabytes of data 
 

• Other languages (e.g., C++) have better support for “flattening 

objects into arrays” 
 

• Levels of indirection matter! 
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Conclusion: Balanced Trees 

• Balanced trees make good dictionaries because they guarantee 
logarithmic-time find, insert, and delete 

– Essential and beautiful computer science 

– But only if you can maintain balance within the time bound 
 

• AVL trees maintain balance by tracking height and allowing all 

children to differ in height by at most 1 
 

• B trees maintain balance by keeping nodes at least half full and 

all leaves at same height 
 

• Other great balanced trees (see text; worth knowing they exist) 

– Red-black trees: all leaves have depth within a factor of 2 

– Splay trees: self-adjusting; amortized guarantee; no extra 

space for height information 
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