

CSE 332: Data Abstractions Lecture 6: Dictionaries; Binary Search Trees

Ruth Anderson Winter 2015

Announcements

- Homework 1 due TONIGHT at 11pm via catalyst
- Homework 2 due next Friday
- Project 2
 - Coming soon!
 - Can work with a partner

Today

- Dictionaries
- Trees

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

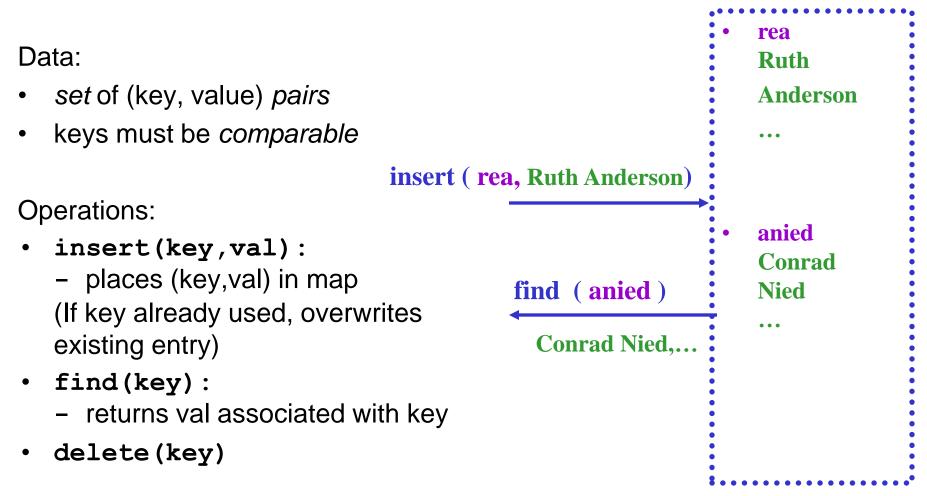
ADTs so far:

- 1. Stack: push, pop, isEmpty, ...
- 2. Queue: enqueue, dequeue, isEmpty, ...
- 3. Priority queue: insert, deleteMin, ...

Next:

- 4. Dictionary (a.k.a. Map): associate keys with values
 - probably the most common, way more than priority queue

The Dictionary (a.k.a. Map) ADT



1/16/2015

We will tend to emphasize the keys, but don't forget about the stored values!

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

- A key is *present* or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets
 - Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

- union, intersection, is_subset, etc.
- Notice these are binary operators on sets
- We will want different data structures to implement these operators

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to retrieve it efficiently – a dictionary is the ADT to use!
Lots of programs do that!

- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, ...
- Biology: genome maps
- ...

Simple implementations

For dictionary with *n* key/value pairs

- insert find delete
- Unsorted linked-list
- Unsorted array
- Sorted linked list
- Sorted array

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Simple implementations

For dictionary with *n* key/value pairs

		insert	find	delete
•	Unsorted linked-list	<i>O</i> (n) *	O(<i>n</i>)	<i>O</i> (<i>n</i>)
•	Unsorted array	<i>O</i> (n)*	O(<i>n</i>)	<i>O</i> (<i>n</i>)
•	Sorted linked list	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(<i>n</i>)
•	Sorted array	O(<i>n</i>)	O(log n)	O(<i>n</i>)

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

*Note: If we allow duplicates values to be inserted, you could do these in O(1) because you do not need to check for a key's existence before insertion

<u>Lazy</u> Deletion (e.g. in a sorted array)

10	12	24	30	41	42	44	45	50
\checkmark	x	\checkmark	\checkmark	~	\checkmark	×	\checkmark	\checkmark

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted
- No need to shift values, etc.

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra *space* for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find O(log m) time where m is data-structure size (m >= n)

- May complicate other operations

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with three different data structures

- 1. AVL trees
 - Binary search trees with *guaranteed balancing*
- 2. B-Trees
 - Also always balanced, but different and shallower
 - B!=Binary; B-Trees generally have large branching factor
- 3. Hashtables
 - Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

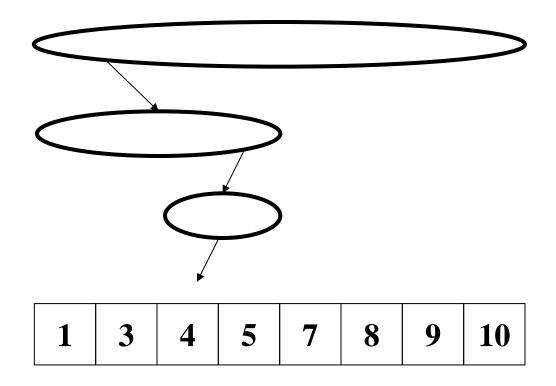
Why Trees?

Trees offer speed ups because of their branching factors

• Binary Search Trees are structured forms of *binary search*

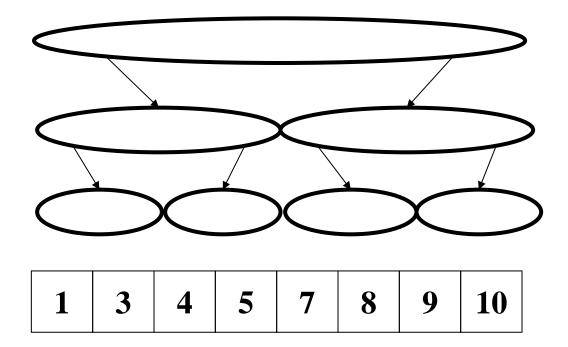
Binary Search

find(4)



Binary Search Tree

Our goal is the performance of binary search in a tree representation



Why Trees?

Trees offer speed ups because of their branching factors

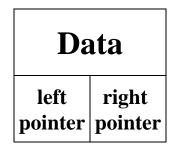
• Binary Search Trees are structured forms of *binary search*

Even a basic BST is fairly good

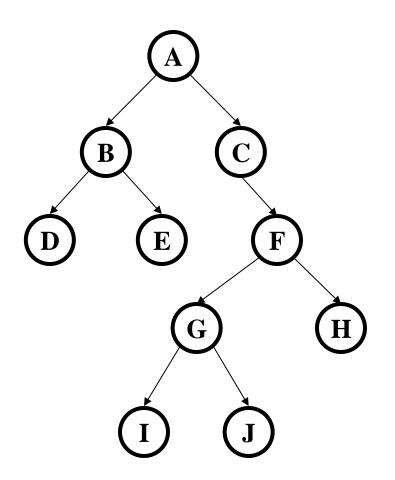
	Insert	Find	Delete
Worse-Case	O(n)	O(n)	O(n)
Average-Case	O(log n)	O(log n)	O(log n)

Binary Trees

- Binary tree is empty or
 - a root (with data)
 - a left subtree (maybe empty)
 - a right subtree (maybe empty)
- Representation:



For a dictionary, data will include a key and a value



Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height *h*:

- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

2h

For binary tree of height *h*:

– max # of leaves:

- max # of nodes: $2^{(h+1)} - 1$

- min # of leaves:
- min # of nodes: h + 1

For n nodes, we cannot do better than $O(\log n)$ height, and we want to avoid O(n) height

Calculating height

What is the height of a tree with root **root**?

Calculating height

What is the height of a tree with root r?

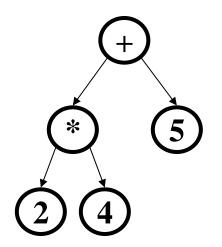
Running time for tree with *n* nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion's call stack

Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- Pre-order. root, left subtree, right subtree
- In-order. left subtree, root, right subtree
- Post-order. left subtree, right subtree, root

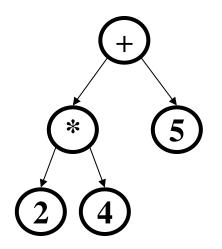


(an expression tree)

Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- Pre-order. root, left subtree, right subtree
 + * 2 4 5
- In-order. left subtree, root, right subtree
 2*4+5
- Post-order. left subtree, right subtree, root
 2 4 * 5 +



(an expression tree)

More on traversals

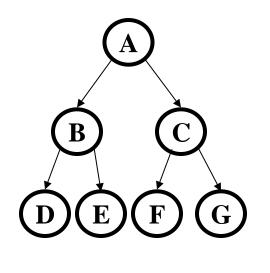
```
void inOrdertraversal(Node t) {
    if(t != null) {
        traverse(t.left);
        process(t.element);
        traverse(t.right);
    }
}
```

Sometimes order doesn't matter

• Example: sum all elements

Sometimes order matters

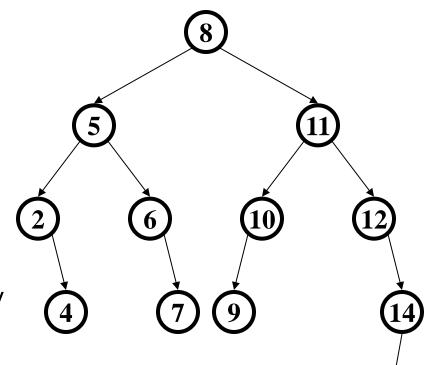
- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)



A B D E C F G

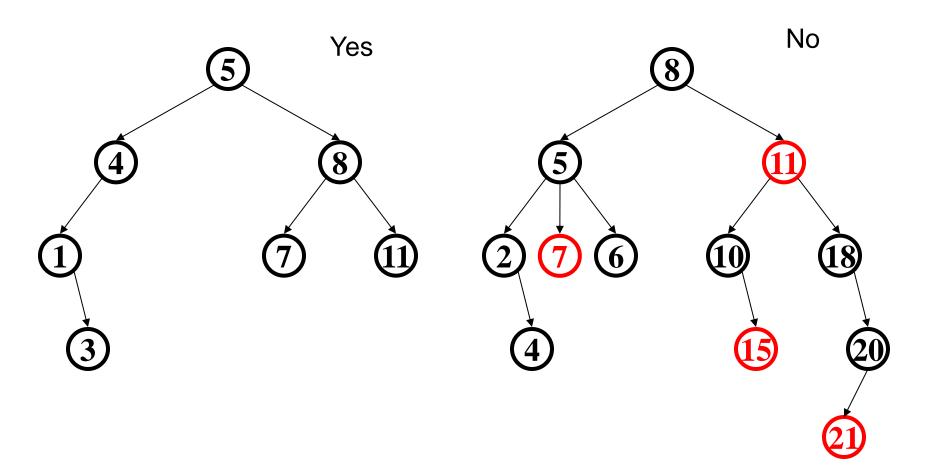
Binary Search Tree

- Structural property ("binary")
 - each node has \leq 2 children
 - result: keeps operations simple
- Order property
 - all keys in left subtree smaller than node's key
 - all keys in right subtree larger than node's key
 - result: easy to find any given key

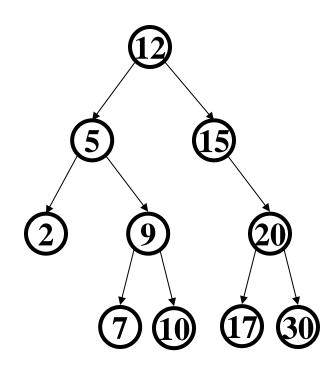


Are these BSTs? (6)7) (10)

Are these BSTs?

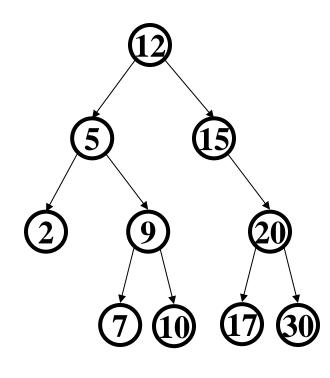


Find in BST, Recursive



Data find(Key key, Node root) {
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}

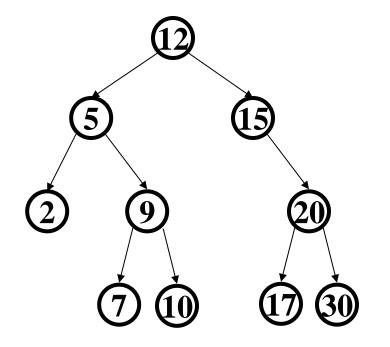
Find in BST, Iterative



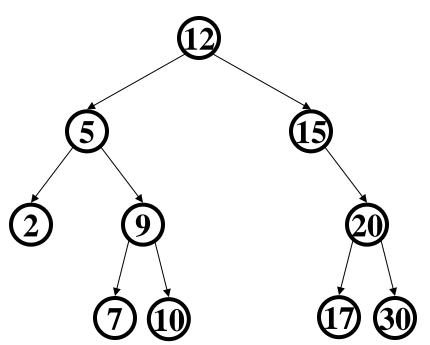
```
Data find(Key key, Node root){
  while(root != null
          && root.key != key) {
     if(key < root.key)
     root = root.left;
     else(key > root.key)
     root = root.right;
  }
  if(root == null)
     return null;
  return root.data;
}
```

Other "finding operations"

- Find *minimum* node
- Find *maximum* node



Insert in BST

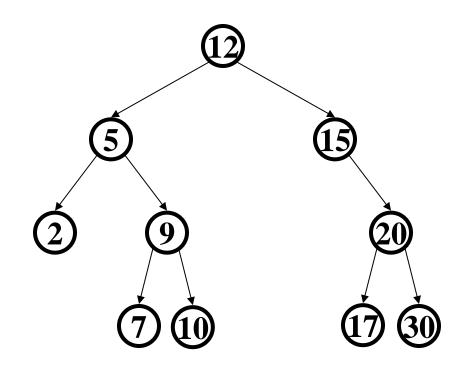


insert(13)
insert(8)
insert(31)

(New) insertions happen only at leaves – easy!

- 1. Find
- 2. Create a new node

Deletion in BST

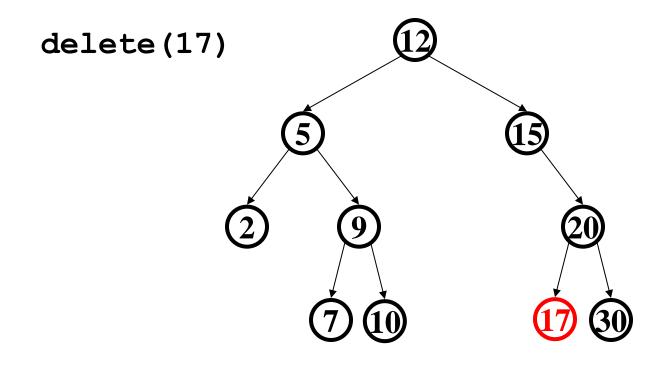


Why might deletion be harder than insertion?

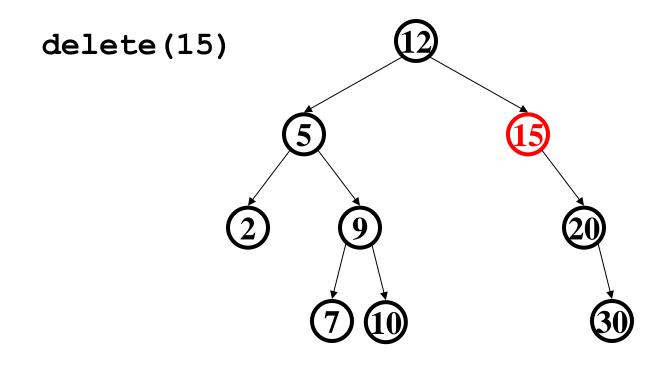
Deletion

- Removing an item disrupts the tree structure
- Basic idea:
 - **find** the node to be removed,
 - Remove it
 - "fix" the tree so that it is still a binary search tree
- Three cases:
 - node has no children (leaf)
 - node has one child
 - node has two children

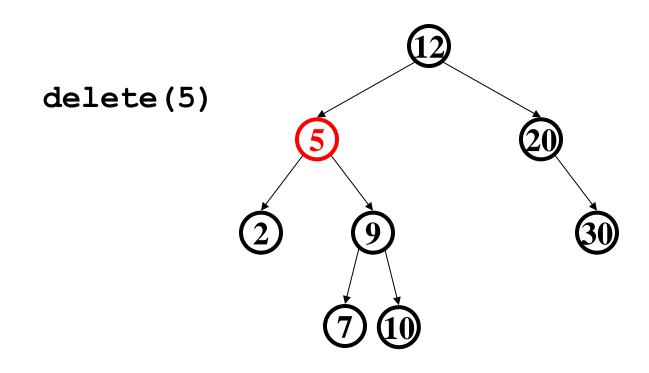
Deletion – The Leaf Case



Deletion – The One Child Case



Deletion – The Two Child Case



What can we replace 5 with?

Deletion – The Two Child Case

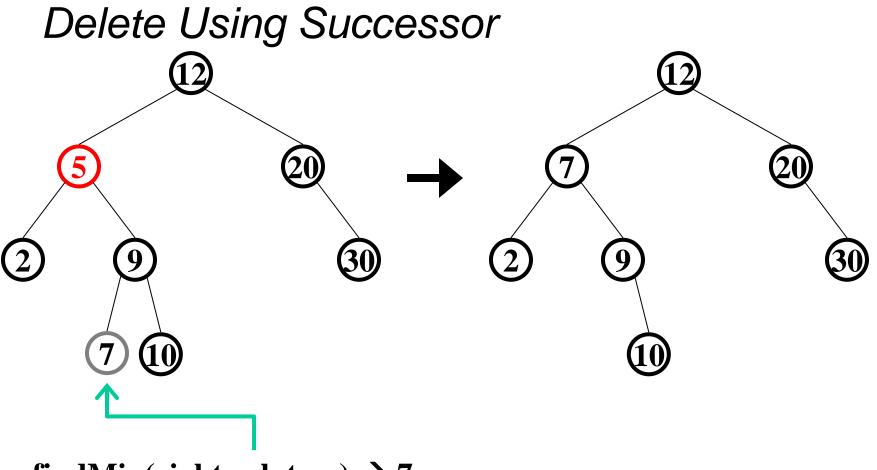
Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- *successor* from right subtree: findMin(node.right)
- predecessor from left subtree: findMax(node.left)
 - These are the easy cases of predecessor/successor

Now delete the original node containing *successor* or *predecessor*

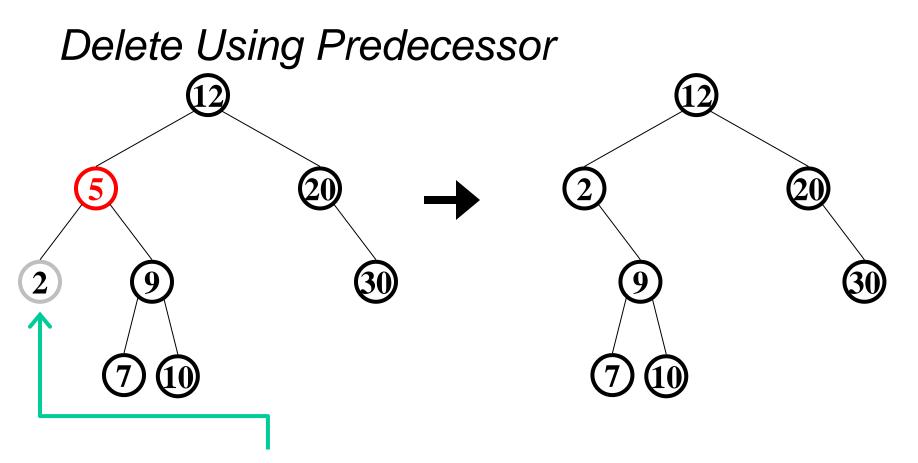
• Leaf or one child case – easy cases of delete!



findMin(right sub tree) \rightarrow 7

delete(5)

1/16/2015



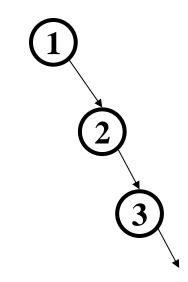
findMax(left sub tree) $\rightarrow 2$

delete(5)

1/16/2015

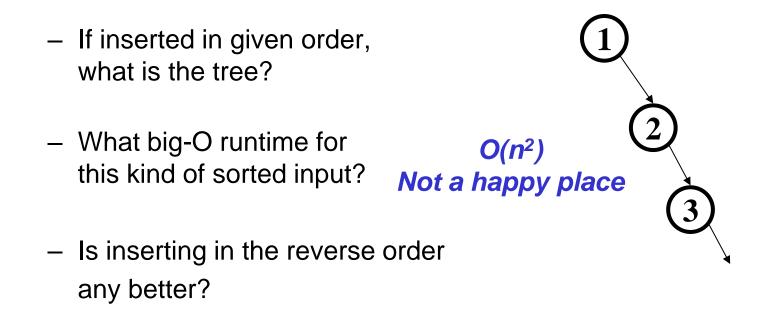
BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input?
 - Is inserting in the reverse order any better?



BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST



Balanced BST

Observation

- BST: the shallower the better!
- For a BST with *n* nodes inserted in arbitrary order
 - Average height is $O(\log n)$ see text for proof
 - Worst case height is O(n)
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a **Balance Condition** that

- 1. ensures depth is always $O(\log n)$ strong enough!
- 2. is easy to maintain not too strong!

1. Left and right subtrees of the *root* have equal number of nodes

2. Left and right subtrees of the *root* have equal *height*

1. Left and right subtrees of the *root* have equal number of nodes

Too weak! Height mismatch example:

2. Left and right subtrees of the *root* have equal *height*

Too weak! Double chain example:

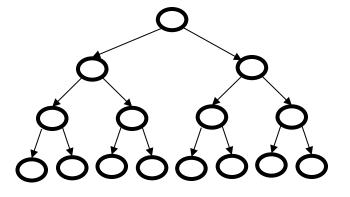
43

3. Left and right subtrees of every node have equal number of nodes

4. Left and right subtrees of every node have equal *height*

3. Left and right subtrees of every node have equal number of nodes

Too strong! Only perfect trees (2ⁿ – 1 nodes)



4. Left and right subtrees of every node have equal *height*

Too strong! Only perfect trees (2ⁿ – 1 nodes)

The AVL Balance Condition

Left and right subtrees of *every node* have *heights* **differing by at most 1**

Definition: **balance**(*node*) = height(*node*.left) – height(*node*.right)

AVL property: for every node x, $-1 \le balance(x) \le 1$

- Ensures small depth
 - Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Easy (well, efficient) to maintain
 - Using single and double rotations