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Announcements  

• Project 1 – phase A due Mon, phase B due Thurs 

• Homework 1 – due Friday 
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Today 

• Analyzing code 

• Big-Oh 
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Logarithms and Exponents 

• Since so much is binary in CS, log almost always means log2   

• Definition: log2 x = y if  x = 2y 

• So, log2 1,000,000 = “a little under 20” 

• Just as exponents grow very quickly, logarithms grow very slowly 
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See Excel file 

for plot data – 

play with it! 



Logarithms and Exponents 
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Logarithms and Exponents 
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Logarithms and Exponents 
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Asymptotic notation 

About to show formal definition, which amounts to saying: 

1. Eliminate low-order terms 

2. Eliminate coefficients 

 

Examples: 

– 4n + 5 

– 0.5n log n + 2n + 7 

– n3 + 2n + 3n 

– n log (10n2 ) 
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Examples 
True or false? 

 

1. 4+3n is O(n) 

2. n+2logn is O(logn) 

3. logn+2 is O(1) 

4. n50 is O(1.1n) 

 

 

Notes: 

• Do NOT ignore constants that are not multipliers: 

– n3 is O(n2) : FALSE 

– 3n is O(2n) : FALSE 

• When in doubt, refer to the definition 
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Examples 
True or false? 

 

1. 4+3n is O(n) 

2. n+2logn is O(logn) 

3. logn+2 is O(1) 

4. n50 is O(1.1n) 

 

 

Notes: 

• Do NOT ignore constants that are not multipliers: 

– n3 is O(n2) : FALSE 

– 3n is O(2n) : FALSE 

• When in doubt, refer to the definition 

 

True 

False 

False 

True 
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Big-Oh relates functions 

We use O on a function f(n) (for example n2) to mean the set of 

functions with asymptotic behavior less than or equal to f(n) 

 

So (3n2+17)  is in O(n2)  

– 3n2+17 and n2  have the same asymptotic behavior 

 

Confusingly, we also say/write: 

– (3n2+17)  is O(n2)  

– (3n2+17)  =  O(n2)  

 

But we would never say O(n2) =  (3n2+17) 
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Formally Big-Oh 

Definition:   g(n) is in O( f(n) ) iff there exist 

positive constants c and n0 such that  

 

 g(n)   c f(n)  for all n  n0 

 

To show g(n) is in O( f(n) ), pick a c large enough to “cover the 

constant factors” and n0 large enough to “cover the lower-order 

terms” 

• Example: Let g(n) = 3n2+17 and f(n) = n2 

  c = 5 and n0  = 10 is more than good enough 

 

This is “less than or equal to” 

– So 3n2+17 is also O(n5) and O(2n)  etc. 
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Using the definition of Big-Oh (Example 1) 

For g(n) = 4n & f(n) = n2, prove g(n) is in O(f(n)) 

– A valid proof is to find valid c & n0  

– When n=4, g(n) =16 & f(n) =16; this is the crossing over point 

– So we can choose n0 = 4, and c  = 1 

 

– Note: There are many possible choices:  

ex: n0 = 78, and c = 42 works fine 

 

The Definition: g(n) is in O(f(n) ) 

iff there exist positive constants c 

and n0 such that 

 g(n)    c f(n) for all n  n0. 
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Using the definition of Big-Oh (Example 2) 

For g(n) = n4 & f(n) = 2n, prove g(n) is in O(f(n)) 

– A valid proof is to find valid c & n0  

– One possible answer: n0 = 20, and c  = 1 

 

The Definition: g(n) is in O(f(n) ) 

iff there exist positive constants c 

and n0 such that 

 g(n)    c f(n) for all n  n0. 
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What’s with the c? 

• To capture this notion of similar asymptotic behavior, we allow a 

constant multiplier (called c) 

• Consider: 

 g(n) = 7n+5 

 f(n) = n 

• These have the same asymptotic behavior (linear),  

so g(n) is in O(f(n)) even though g(n) is always larger 

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0 

• The ‘c’ in the definition allows for that: 

  g(n)   c f(n)  for all n  n0 

• To prove g(n) is in O(f(n)), have c = 12, n0 = 1 
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What you can drop 

• Eliminate coefficients because we don’t have units anyway 

– 3n2  versus 5n2  doesn’t mean anything when we have not 

specified the cost of constant-time operations (can re-scale) 

 

• Eliminate low-order terms because they have vanishingly small 

impact as n grows 

 

• Do NOT ignore constants that are not multipliers 

– n3 is not O(n2) 

– 3n is not O(2n) 

 

(This all follows from the formal definition) 
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Big Oh: Common Categories 

From fastest to slowest 

O(1)  constant (same as O(k) for constant k) 

O(log n) logarithmic 

O(n)  linear 

O(n log n)         “n log n” 

O(n2)  quadratic 

O(n3)  cubic 

O(nk)  polynomial (where is k is any constant > 1) 

O(kn)  exponential (where k is any constant > 1) 
 

Usage note: “exponential” does not mean “grows really fast”, it 

means “grows at rate proportional to kn for some k>1” 
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More Asymptotic Notation 

• Upper bound: O( f(n) ) is the set of all functions asymptotically 

less than or equal to f(n) 

– g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n)   c f(n) for all n  n0 
 

• Lower bound: ( f(n) ) is the set of all functions asymptotically 

greater than or equal to f(n) 

– g(n) is in ( f(n) ) if there exist  constants c and n0 such that  

  g(n)  c f(n) for all n  n0 
 

• Tight bound: ( f(n) ) is the set of all functions asymptotically 

equal to f(n) 

– Intersection of O( f(n) ) and ( f(n) )  (use different c values) 
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Regarding use of terms 

A common error is to say O( f(n) ) when you mean ( f(n) ) 

– People often say O() to mean a tight bound 

– Say we have f(n)=n; we could say f(n) is in O(n), which is 

true, but only conveys the upper-bound 

– Since f(n)=n is also O(n5), it’s tempting to say “this algorithm 

is exactly O(n)” 

– Somewhat incomplete; instead say it is (n) 

– That means that it is not, for example O(log n)  

Less common notation: 

– “little-oh”: like “big-Oh” but strictly less than 

• Example: sum is o(n2) but not o(n) 

– “little-omega”: like “big-Omega” but strictly greater than 

• Example: sum is (log n) but not (n) 
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What we are analyzing 

• The most common thing to do is give an O or  bound to the 

worst-case running time of an algorithm 

 

• Example: True statements about binary-search algorithm  

– Common: (log n) running-time in the worst-case 

– Less common: (1) in the best-case (item is in the middle) 

– Less common: Algorithm is (log log n) in the worst-case 

(it is not really, really, really fast asymptotically) 

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case 

• No algorithm can do better (without parallelism) 

• A problem cannot be O(f(n)) since you can always find a 

slower algorithm, but can mean there exists an algorithm 

1/09/2015 20 



Other things to analyze 

• Space instead of time 

– Remember we can often use space to gain time 

 

• Average case 

– Sometimes only if you assume something about the 

distribution of inputs 

• See CSE312 and STAT391 

– Sometimes uses randomization in the algorithm 

• Will see an example with sorting; also see CSE312 

– Sometimes an amortized guarantee 

• Will discuss in a later lecture 
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Summary 

Analysis can be about: 

• The problem or the algorithm (usually algorithm) 

• Time or space (usually time) 

– Or power or dollars or … 

• Best-, worst-, or average-case (usually worst) 

• Upper-, lower-, or tight-bound  (usually upper or tight) 

1/09/2015 22 



Big-Oh Caveats 

• Asymptotic complexity (Big-Oh) focuses on behavior for large n 

and is independent of any computer / coding trick 

– But you can “abuse” it to be misled about trade-offs 

– Example: n1/10 vs. log n 

• Asymptotically n1/10 grows more quickly 

• But the “cross-over” point is around 5 * 1017 

• So if you have input size less than 258, prefer n1/10 

• Comparing O() for small n values can be misleading 

– Quicksort: O(nlogn) (expected) 

– Insertion Sort: O(n2) (expected) 

– Yet in reality Insertion Sort is faster for small n’s 

– We’ll learn about these sorts later 
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Addendum: Timing vs. Big-Oh? 

• At the core of CS is a backbone of theory & mathematics 

– Examine the algorithm itself, mathematically, not the 
implementation 

– Reason about performance as a function of n 

– Be able to mathematically prove things about performance 

• Yet, timing has its place 

– In the real world, we do want to know whether 
implementation A runs faster than implementation B on data 
set C 

– Ex: Benchmarking graphics cards 

– We will do some timing in project 3 (and in 2, a bit) 

• Evaluating an algorithm?  Use asymptotic analysis 

• Evaluating an implementation of hardware/software?  Timing 
can be useful 

1/09/2015 24 



Extra slides 
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Powers of 2 

• A bit is 0 or 1 

• A sequence of n bits can represent 2n distinct things 

– For example, the numbers 0 through 2n-1 

• 210 is 1024 (“about a thousand”, kilo in CSE speak) 

• 220 is “about a million”, mega in CSE speak 

• 230 is “about a billion”, giga in CSE speak 

 

Java: an int is 32 bits and signed, so “max int” is “about 2 billion” 

          a long is 64 bits and signed, so “max long” is 263-1 
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Therefore… 

Could give a unique id to… 

 

• Every person in the U.S. with 29 bits 

 

• Every person in the world with 33 bits 

 

• Every person to have ever lived with 38 bits (estimate) 

 

• Every atom in the universe with 250-300 bits 

 

So if a password is 128 bits long and randomly generated,  

 do you think you could guess it? 
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Properties of logarithms 

28 

• log(A*B) = log A + log B 

– So log(Nk)= k log N 

 

• log(A/B) = log A – log B 

 

• X = 

• log(log x) is written log log x 

– Grows as slowly as 22  grows fast 

– Ex:  

 

• (log x)(log x) is written log2x 

– It is greater than log x for all x > 2 

y 

532log2loglog~4loglog
2

32

2222
billion

x
2log

2
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Log base doesn’t matter (much) 

“Any base B log is equivalent to base 2 log within a constant factor” 

– And we are about to stop worrying about constant factors! 

– In particular, log2 x = 3.22 log10 x 

– In general, we can convert log bases via a constant 

multiplier  

– Say, to convert from base A to base B:  

   logB x = (logA x) / (logA B) 
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Algorithm Analysis 

As the “size” of an algorithm’s input grows 

 (integer, length of array, size of queue, etc.): 

– How much longer does the algorithm take (time) 

– How much more memory does the algorithm need (space) 

 

Because the curves we saw are so different, we often only care 

about “which curve we are like” 

 

Separate issue: Algorithm correctness – does it produce the right 

answer for all inputs 

– Usually more important, naturally 
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Example 

• What does this pseudocode return? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 

• Correctness: For any N ≥ 0, it returns… 
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Example 

• What does this pseudocode return? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 

• Correctness: For any N ≥ 0, it returns 3N(N+1)/2 

• Proof: By induction on n 

– P(n) = after outer for-loop executes n times, x holds     

  3n(n+1)/2 

– Base: n=0, returns 0 

– Inductive: From P(k), x holds 3k(k+1)/2 after k iterations. 

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)  

 = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2 
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Example 

• How long does this pseudocode run? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 

• Running time: For any N ≥ 0,  

– Assignments, additions, returns take “1 unit time” 

– Loops take the sum of the time for their iterations 

 

• So: 2 + 2*(number of times inner loop runs) 

– And how many times is that? 
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Example 

• How long does this pseudocode run? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 
 

• How many times does the inner loop run? 
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Example 

• How long does this pseudocode run? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 

• The total number of loop iterations is N*(N+1)/2 

– This is a very common loop structure, worth memorizing 

– This is proportional to N2 , and we say O(N2), “big-Oh of” 

• For large enough N, the N and constant terms are 

irrelevant, as are the first assignment and return 

• See plot… N*(N+1)/2 vs. just N2/2 
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Lower-order terms don’t matter 

N*(N+1)/2 vs. just N2/2 
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Geometric interpretation 

 

∑ i  = N*N/2+N/2 

 
for i=1 to N do 
  for j=1 to i do 
     // small work 

 

 

N 

i=1 

• Area of square: N*N 

• Area of lower triangle of square: N*N/2 

• Extra area from squares crossing the diagonal: N*1/2 

• As N grows, fraction of “extra area” compared to lower triangle 

goes to zero (becomes insignificant) 
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Recurrence Equations  

• For running time, what the loops did was irrelevant, it was how 

many times they executed. 
 

• Running time as a function of input size n (here loop bound): 

  T(n) = n + T(n-1)     

 (and T(0) = 2ish, but usually implicit that T(0) is some constant) 
 

• Any algorithm with running time described by this formula is O(n2) 
 

• “Big-Oh” notation also ignores the constant factor on the high-

order term, so 3N2 and 17N2 and (1/1000) N2  are all O(N2) 

– As N grows large enough, no smaller term matters 

– Next time: Many more examples + formal definitions 
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