

CSE 332: Data Abstractions Lecture 3: Asymptotic Analysis

Ruth Anderson Winter 2015

Announcements

- **Project 1** phase A due Mon, phase B due Thurs
- Homework 1 due Friday

Today

- Analyzing code
- Big-Oh

- Since so much is binary in CS, log almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

1/09/2015

Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- 4*n* + 5
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n \log(10n^2)$

True or false?

- 1. 4+3n is O(n)
- 2. n+2logn is O(logn)
- 3. logn+2 is O(1)
- 4. n⁵⁰ is O(1.1ⁿ)

Notes:

- Do NOT ignore constants that are not multipliers:
 - n^3 is O(n²) : FALSE
 - 3^n is O(2ⁿ) : FALSE
- When in doubt, refer to the definition

True or false?

1.4+3n is O(n)True2. $n+2\log n$ is O(logn)False3. $\log n+2$ is O(1)False4. n^{50} is O(1.1ⁿ)True

Notes:

- Do NOT ignore constants that are not multipliers:
 - n^3 is O(n²) : FALSE
 - 3^n is O(2ⁿ) : FALSE
- When in doubt, refer to the definition

Big-Oh relates functions

We use O on a function f(n) (for example n²) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

- $3n^2$ +17 and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $(3n^2 + 17)$ is $O(n^2)$
- $(3n^2 + 17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

- To show **g**(*n*) is in O(**f**(*n*)), pick a *c* large enough to "cover the constant factors" and *n*₀ large enough to "cover the lower-order terms"
- Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$

c = 5 and $n_0 = 10$ is more than good enough

This is "less than or equal to"

- So $3n^2$ +17 is also $O(n^5)$ and $O(2^n)$ etc.

Using the definition of Big-Oh (Example 1)

For $g(n) = 4n \& f(n) = n^2$, prove g(n) is in O(f(n))

- A valid proof is to find valid c & n₀
- When n=4, g(n) = 16 & f(n) = 16; this is the crossing over point
- So we can choose $n_0 = 4$, and c = 1
- Note: There are many possible choices:
 ex: n₀ = 78, and c = 42 works fine

The Definition: g(n) is in O(f(n))iff there exist *positive* constants cand n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$.

Using the definition of Big-Oh (Example 2)

For $g(n) = n^4 \& f(n) = 2^n$, prove g(n) is in O(f(n))

- A valid proof is to find valid c & n₀
- One possible answer: $n_0 = 20$, and c = 1

The Definition: g(n) is in O(f(n))iff there exist *positive* constants cand n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$.

What's with the **c**?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

g(n) = 7n+5 **f(n)** = n

- These have the same asymptotic behavior (linear), so g(n) is in O(f(n)) even though g(n) is always larger
- There is no positive n_0 such that $g(n) \le f(n)$ for all $n \ge n_0$
- The 'c' in the definition allows for that: $g(n) \le c f(n)$ for all $n \ge n_0$
- To prove g(n) is in O(f(n)), have c = 12, n₀ = 1

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations (can re-scale)
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^{n} is not $O(2^{n})$

(This all follows from the formal definition)

Big Oh: Common Categories

From fastest to slowest

<i>O</i> (1)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>)
O(log n)	logarithmic
<i>O</i> (<i>n</i>)	linear
O(n log n)	"n log <i>n</i> "
<i>O</i> (<i>n</i> ²)	quadratic
<i>O</i> (<i>n</i> ³)	cubic
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is any constant > 1)
<i>O</i> (<i>k</i> ⁿ)	exponential (where <i>k</i> is any constant > 1)

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (use *different* c values)

Regarding use of terms

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Since f(n)=n is also O(n⁵), it's tempting to say "this algorithm is exactly O(n)"
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
 - Example: sum is $o(n^2)$ but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is Ω(log log n) in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sortedarray *problem* is Ω(log n) in the worst-case
 - *No* algorithm can do better (without parallelism)
 - A problem cannot be O(f(n)) since you can always find a slower algorithm, but can mean there exists an algorithm

Other things to analyze

- Space instead of time
 - Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the distribution of inputs
 - See CSE312 and STAT391
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting; also see CSE312
 - Sometimes an *amortized guarantee*
 - Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for <u>large n</u> and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. log n
 - Asymptotically *n*^{1/10} grows more quickly
 - But the "cross-over" point is around 5 * 10¹⁷
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- Comparing O() for <u>small n</u> values can be misleading
 - Quicksort: O(nlogn) (expected)
 - Insertion Sort: $O(n^2)$ (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
 - We will do some timing in project 3 (and in 2, a bit)
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

Extra slides

Powers of 2

- A bit is 0 or 1
- A sequence of *n* bits can represent 2ⁿ distinct things
 For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2⁶³-1

Therefore

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So $\log(N^k) = k \log N$
- log(A/B) = log A log B
- $\mathbf{x} = \log_{2} 2^{x}$
- log(log x) is written log log x
 - Grows as slowly as 2^{2^y} grows fast
 - Ex:

 $\log_{2} \log_{2} 4 \text{ billion} \sim \log_{2} \log_{2} 2^{32} = \log_{2} 32 = 5$

• (log x) (log x) is written log^2x

- It is greater than $\log x$ for all x > 2

Log base doesn't matter (much)

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base A to base B:

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Algorithm Analysis

As the "size" of an algorithm's input grows

(integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care about "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

- Usually more important, naturally

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
  for j=1 to i do
     x := x + 3;
return x;
```

• Correctness: For any $N \ge 0$, it returns...

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
   for j=1 to i do
        x := x + 3;
return x;
```

- Correctness: For any $N \ge 0$, it returns 3N(N+1)/2
- Proof: By induction on *n*
 - P(n) = after outer for-loop executes *n* times, **x** holds 3n(n+1)/2
 - Base: n=0, returns 0
 - Inductive: From P(k), **x** holds 3k(k+1)/2 after k iterations. Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)= (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

- Running time: For any $N \ge 0$,
 - Assignments, additions, returns take "1 unit time"
 - Loops take the sum of the time for their iterations
- So: 2 + 2*(number of times inner loop runs)
 - And how many times is that?

• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

• How many times does the inner loop run?

How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

- The total number of loop iterations is N*(N+1)/2
 - This is a very common loop structure, worth memorizing
 - This is proportional to N^2 , and we say $O(N^2)$, "big-Oh of"
 - For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 - See plot... N*(N+1)/2 vs. just N²/2

Lower-order terms don't matter

$N^{*}(N+1)/2$ vs. just $N^{2}/2$

Geometric interpretation

- Area of square: N*N
- Area of lower triangle of square: N*N/2
- Extra area from squares crossing the diagonal: N*1/2
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Recurrence Equations

- For running time, what the loops did was irrelevant, it was how many times they executed.
- Running time as a function of input size *n* (here loop bound):
 T(*n*) = *n* + *T*(*n*-1)
 (and *T*(0) = 2ish, but usually implicit that *T*(0) is some constant)
- Any algorithm with running time described by this formula is $O(n^2)$
- "Big-Oh" notation also ignores the constant factor on the high-order term, so $3N^2$ and $17N^2$ and $(1/1000) N^2$ are all $O(N^2)$
 - As N grows large enough, no smaller term matters
 - Next time: Many more examples + formal definitions