

CSE 332: Data Abstractions
Lecture 3: Asymptotic Analysis

Ruth Anderson

Winter 2015

Announcements

- Project 1 - phase A due Mon, phase B due Thurs
- Homework 1 - due Friday

Today

- Analyzing code
- Big-Oh

Logarithms and Exponents

- Since so much is binary in CS, log almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:

$$
\begin{aligned}
& -4 n+5 \\
& -\quad 0.5 n \log n+2 n+7 \\
& -\quad n^{3}+2^{n}+3 n \\
& -\quad n \log \left(10 n^{2}\right)
\end{aligned}
$$

Examples

True or false?

1. $4+3 n$ is $\mathrm{O}(\mathrm{n})$
2. $n+2 \operatorname{logn}$ is $\mathrm{O}(\log n)$
3. logn +2 is $\mathrm{O}(1)$
4. n^{50} is $\mathrm{O}\left(1.1^{\mathrm{n}}\right)$

Notes:

- Do NOT ignore constants that are not multipliers:
$-n^{3}$ is $O\left(n^{2}\right)$: FALSE
-3^{n} is $O\left(2^{n}\right)$: FALSE
- When in doubt, refer to the definition

Examples

True or false?

1. $4+3 n$ is $O(n)$
2. $n+2 \log n$ is $O(\log n)$
3. $\log n+2$ is $\mathrm{O}(1)$
4. n^{50} is $\mathrm{O}\left(1.1^{\mathrm{n}}\right)$

True
False
False
True

Notes:

- Do NOT ignore constants that are not multipliers:
- n^{3} is $\mathrm{O}\left(\mathrm{n}^{2}\right)$: FALSE
-3^{n} is $O\left(2^{n}\right)$: FALSE
- When in doubt, refer to the definition

Big-Oh relates functions

We use O on a function $f(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior less than or equal to $\mathrm{f}(n)$

So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
$-3 n^{2}+17$ and n^{2} have the same asymptotic behavior

Confusingly, we also say/write:
$-\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
$-\left(3 n^{2}+17\right)=O\left(n^{2}\right)$

But we would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$

Formally Big-Oh

Definition: $g(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ iff there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lower-order terms"

- Example: Let $\mathrm{g}(n)=3 n^{2}+17$ and $\mathrm{f}(n)=n^{2}$

$$
c=5 \text { and } n_{0}=10 \text { is more than good enough }
$$

This is "less than or equal to"

- So $3 n^{2}+17$ is also $O\left(n^{5}\right)$ and $O\left(2^{n}\right)$ etc.

Using the definition of Big-Oh (Example 1)

For $\mathrm{g}(\mathrm{n})=4 \mathrm{n}$ \& $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}$, prove $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{f}(\mathrm{n})$)

- A valid proof is to find valid c \& n_{0}
- When $n=4, g(n)=16 \& f(n)=16$; this is the crossing over point
- So we can choose $n_{0}=4$, and $c=1$
- Note: There are many possible choices: ex: $n_{0}=78$, and $c=42$ works fine

The Definition: $\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n)$) iff there exist positive constants c and n_{0} such that

$$
g(n) \leq c \mathbf{f}(n) \text { for all } n \geq n_{0}
$$

Using the definition of Big-Oh (Example 2)

For $g(n)=n^{4} \& f(n)=2^{n}$, prove $g(n)$ is in $O(f(n))$

- A valid proof is to find valid c \& n_{0}
- One possible answer: $\mathrm{n}_{0}=20$, and $\mathrm{c}=1$

The Definition: $\mathbf{g}(n)$ is in $\mathbf{O}(\mathbf{f}(n))$ iff there exist positive constants c and n_{0} such that

$$
g(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

What's with the c ?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

$$
\begin{aligned}
& g(n)=7 n+5 \\
& f(n)=n
\end{aligned}
$$

- These have the same asymptotic behavior (linear), so $g(n)$ is in $O(f(n))$ even though $g(n)$ is always larger
- There is no positive n_{0} such that $\mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$
- The ' c ' in the definition allows for that:

$$
g(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

- To prove $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{f}(\mathrm{n}))$, have $\mathrm{c}=12, \mathrm{n}_{0}=1$

What you can drop

- Eliminate coefficients because we don't have units anyway
- $3 n^{2}$ versus $5 n^{2}$ doesn't mean anything when we have not specified the cost of constant-time operations (can re-scale)
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
- n^{3} is not $O\left(n^{2}\right)$
-3^{n} is not $O\left(2^{n}\right)$
(This all follows from the formal definition)

Big Oh: Common Categories

From fastest to slowest

$O(1)$	constant (same as $O(k)$ for constant k)
$O(\log n)$	logarithmic
$O(n)$	linear
$O(\mathrm{n} \log n)$	"n log $n "$
$O\left(n^{2}\right)$	quadratic
$O\left(n^{3}\right)$	cubic
$O\left(n^{k}\right)$	polynomial (where is k is any constant > 1)
$O\left(k^{n}\right)$	exponential (where k is any constant $>1)$

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

More Asymptotic Notation

- Upper bound: $O(\mathrm{f}(\mathrm{n}))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $g(n)$ is in $O(f(n))$ if there exist constants c and n_{0} such that $\mathrm{g}(\mathrm{n}) \leq \mathrm{cf}(\mathrm{n})$ for all $n \geq n_{0}$
- Lower bound: $\Omega(\mathrm{f}(\mathrm{n}))$) is the set of all functions asymptotically greater than or equal to $f(n)$
$-g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
- Intersection of $O(\mathrm{f}(\mathrm{n})$) and $\Omega(\mathrm{f}(\mathrm{n}))$ (use different c values)

Regarding use of terms

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- People often say $O()$ to mean a tight bound
- Say we have $f(n)=n$; we could say $f(n)$ is in $O(n)$, which is true, but only conveys the upper-bound
- Since $f(\mathrm{n})=\mathrm{n}$ is also $O\left(n^{5}\right)$, it's tempting to say "this algorithm is exactly $O(n)$ "
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
- Example: sum is $O\left(n^{2}\right)$ but not $O(n)$
- "little-omega": like "big-Omega" but strictly greater than
- Example: sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
- Common: $\theta(\log n)$ running-time in the worst-case
- Less common: $\theta(1)$ in the best-case (item is in the middle)
- Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
- Less common (but very good to know): the find-in-sortedarray problem is $\Omega(\log n)$ in the worst-case
- No algorithm can do better (without parallelism)
- A problem cannot be $O(f(n))$ since you can always find a slower algorithm, but can mean there exists an algorithm

Other things to analyze

- Space instead of time
- Remember we can often use space to gain time
- Average case
- Sometimes only if you assume something about the distribution of inputs
- See CSE312 and STAT391
- Sometimes uses randomization in the algorithm
- Will see an example with sorting; also see CSE312
- Sometimes an amortized guarantee
- Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for large n and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- But the "cross-over" point is around 5 * 10^{17}
- So if you have input size less than 2^{58}, prefer $n^{1 / 10}$
- Comparing O() for small \boldsymbol{n} values can be misleading
- Quicksort: O(nlogn) (expected)
- Insertion Sort: O(n²) (expected)
- Yet in reality Insertion Sort is faster for small n's
- We'll learn about these sorts later

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory \& mathematics
- Examine the algorithm itself, mathematically, not the implementation
- Reason about performance as a function of n
- Be able to mathematically prove things about performance
- Yet, timing has its place
- In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
- Ex: Benchmarking graphics cards
- We will do some timing in project 3 (and in 2, a bit)
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

Extra slides

Powers of 2

- A bit is 0 or 1
- A sequence of n bits can represent 2^{n} distinct things
- For example, the numbers 0 through $2^{n}-1$
- 2^{10} is 1024 ("about a thousand", kilo in CSE speak)
- 2^{20} is "about a million", mega in CSE speak
- 2^{30} is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is $2^{63}-1$

Therefore...

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with $250-300$ bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Properties of logarithms

- $\log (A * B)=\log A+\log B$
- So $\log \left(N^{k}\right)=k \log N$
- $\log (A / B)=\log A-\log B$
- $\mathrm{x}=\log _{2} 2^{x}$
- $\log (\log x)$ is written $\log \log x$
- Grows as slowly as $2^{2^{y}}$ grows fast
- Ex:
$\log _{2} \log _{2} 4$ billion $\sim \log _{2} \log _{2} 2^{32}=\log _{2} 32=5$
- $(\log \mathbf{x})(\log \mathbf{x})$ is written $\log ^{2} \mathbf{x}$
- It is greater than $\log \mathbf{x}$ for all $\mathbf{x}>2$

Log base doesn't matter (much)

"Any base $B \log$ is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} \mathbf{x}=3.22 \log _{10} \mathbf{x}$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base A to base B:
$\log _{\mathrm{B}} \mathbf{x}=\left(\log _{\mathrm{A}} \mathbf{x}\right) /\left(\log _{\mathrm{A}} \mathrm{B}\right)$

Algorithm Analysis

As the "size" of an algorithm's input grows
(integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care about "which curve we are like"

Separate issue: Algorithm correctness - does it produce the right answer for all inputs

- Usually more important, naturally

Example

- What does this pseudocode return?

```
x := 0;
for i=1 to N do
            for j=1 to i do
            x := x + 3;
return x;
```

- Correctness: For any $\mathrm{N} \geq 0$, it returns...

Example

- What does this pseudocode return?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
    return x;
```

- Correctness: For any $\mathrm{N} \geq 0$, it returns $3 \mathrm{~N}(\mathrm{~N}+1) / 2$
- Proof: By induction on n
- $P(n)=$ after outer for-loop executes n times, \mathbf{x} holds $3 n(n+1) / 2$
- Base: $\mathrm{n}=0$, returns 0
- Inductive: From $P(k), \mathbf{x}$ holds $3 k(k+1) / 2$ after k iterations. Next iteration adds $3(k+1)$, for total of $3 k(k+1) / 2+3(k+1)$ $=(3 k(k+1)+6(k+1)) / 2=(k+1)(3 k+6) / 2=3(k+1)(k+2) / 2$

Example

- How long does this pseudocode run?

$$
\begin{aligned}
& \mathbf{x}:=0 ; \\
& \text { for } i=1 \text { to } N \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \text { return }:=\mathbf{x}+3 ;
\end{aligned}
$$

- Running time: For any $\mathrm{N} \geq 0$,
- Assignments, additions, returns take "1 unit time"
- Loops take the sum of the time for their iterations
- So: $2+2^{*}$ (number of times inner loop runs)
- And how many times is that?

Example

- How long does this pseudocode run?

```
x := 0;
    for i=1 to N do
        for j=1 to i do
        x := x + 3;
    return x;
```

- How many times does the inner loop run?

Example

- How long does this pseudocode run?

```
x := 0;
for i=1 to N do
        for j=1 to i do
        x := x + 3;
    return x;
```

- The total number of loop iterations is $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$
- This is a very common loop structure, worth memorizing
- This is proportional to N^{2}, and we say $O\left(\mathrm{~N}^{2}\right)$, "big-Oh of"
- For large enough N , the N and constant terms are irrelevant, as are the first assignment and return
- See plot... $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$ vs. just $\mathrm{N}^{2} / 2$

Lower-order terms don't matter

$N^{*}(N+1) / 2$ vs. just $N^{2} / 2$

Geometric interpretation

$$
\begin{aligned}
& \sum_{i=1}^{N} i=N^{*} N / 2+N / 2 \\
& \text { for } i=1 \text { to } N \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& / / / \text { small work }
\end{aligned}
$$

- Area of square: $\mathrm{N}^{*} \mathrm{~N}$
- Area of lower triangle of square: $\mathrm{N}^{\star} \mathrm{N} / 2$
- Extra area from squares crossing the diagonal: $\mathrm{N}^{*} 1 / 2$
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Recurrence Equations

- For running time, what the loops did was irrelevant, it was how many times they executed.
- Running time as a function of input size n (here loop bound):

$$
T(n)=n+T(n-1)
$$

(and $T(0)=$ 2ish, but usually implicit that $T(0)$ is some constant)

- Any algorithm with running time described by this formula is $O\left(n^{2}\right)$
- "Big-Oh" notation also ignores the constant factor on the highorder term, so $3 \mathrm{~N}^{2}$ and $17 \mathrm{~N}^{2}$ and $(1 / 1000) \mathrm{N}^{2}$ are all $O\left(\mathrm{~N}^{2}\right)$
- As N grows large enough, no smaller term matters
- Next time: Many more examples + formal definitions

