

 Page 1 of 2

CSE 332 Data Abstractions, Winter 2015

Homework 8
Due: Wednesday, March 11, 2015 at 11pm via Gradescope. LATE SUBMISSIONS NOT

ACCEPTED. Homework Eight has three thought provoking questions!!

Problem 1: Another Wrong Bank Account
Note: The purpose of this problem is to show you something you should not do because it does not work.

Consider this pseudocode for a bank account supporting concurrent access; assume that Lock is a valid

locking class, although it is not in Java:

class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

int getBalance() {

lk.acquire();

int ans = balance;

lk.release();

return ans;

}

void setBalance(int x) {

lk.acquire();

balance = x;

lk.release();

}

void withdraw(int amount) {

lk.acquire();

int b = getBalance();

if(amount > b) {

lk.release();

throw new WithdrawTooLargeException();

}

setBalance(b - amount);

lk.release();

}

}

The code above is wrong if locks are not re-entrant. Consider the absolutely horrible idea of “fixing” this

problem by rewriting the withdraw method to be:

void withdraw(int amount) {

lk.acquire();

lk.release();

int b = getBalance();

lk.acquire();

if(amount > b) {

lk.release();

throw new WithdrawTooLargeException();

}

lk.release();

setBalance(b - amount);

lk.acquire();

lk.release();

}

(a) Explain why this “fixed” code doesn't “block forever” (unlike the original code).

 Page 2 of 2

(b) Show this new approach is incorrect by giving an interleaving of two threads, both calling the new

withdraw, in which a withdrawal is forgotten.

Problem 2. Simple Concurrency with B-Trees

Note: Real databases and file systems use very fancy fine-grained synchronization for B-Trees such as

“hand-over-hand locking” (which we did not discuss), but this problem considers some relatively simpler

approaches.

Suppose we have a B Tree supporting operations insert and lookup (deletion is NOT a supported

operation on this particular B Tree). A simple way to synchronize threads accessing the tree would be to

have one lock for the entire tree that both operations acquire/release.

(a) Suppose instead we have one lock per node in the tree. Each operation acquires the locks along

the path to the leaf it needs and then at the end releases all these locks. Explain why this allegedly

more fine-grained approach provides absolutely no benefit.

(b) Now suppose we have one readers/writer lock per node and lookup acquires a read lock for each

node it encounters whereas insert acquires a write lock for each node it encounters. Assume that

the same policy from part (a) is followed in that a thread will only release all of its locks when it

is done with its operation. How does this provide more concurrent access than the approach in

part (a)? Is it any better than having one readers/writer lock for the whole tree (explain)?

(c) Now suppose we modify the approach in part (b) so that insert acquires a write lock only for the

leaf node (and read locks for other nodes it encounters). How would this approach increase

concurrent access? When would this be incorrect? Explain how to fix this approach without

changing the asymptotic complexity of insert by detecting when it is incorrect and in (only) those

cases, starting the insert over using the approach in part (b) for that insert. Why would reverting

to the approach in part (b) be fairly rare?

Problem 3. Minimum Spanning Trees

(a) Weiss, problem 9.15(a). For Prim’s algorithm, start with vertex A, show the resulting table (see

Figure 9.57 of the 3
rd

 edition as an example, which is Figure 9.55 in the 2
nd

 edition), and indicate

the order in which vertices are added. For Kruskal’s algorithm, produce a table, similar to

Figure 9.58 in the 3
rd

 edition, which is Figure 9.56 in the 2
nd

 edition. Ties may be broken

arbitrarily. Please use the provided template.

(b) Weiss, problem 9.15(b). Is this MST unique? Why? Be specific in your answer. If no, show

another MST, if yes, explain why.

