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CSE 332 Data Abstractions, Winter 2015 

Homework 7 
Due: Wednesday, March 4, 2015 at 11pm via Gradescope. Homework Seven has three thrilling 

questions!! 

Problem 1: Amdahl’s Law: Graphing the Pain 
Use a graphing program such as a spreadsheet to plot the following implications of Amdahl’s Law. For 

both part a and part b, turn in 1) the graphs and 2) tables with the data. 

(a) Consider the speed-up (T1/TP ) where P = 256 of a program with sequential portion S where the 

portion 1 − S enjoys perfect linear speed-up. Plot the speed-up as S ranges from 0.01 (1% sequential) 

to 0.25 (25% sequential). 

(b) Consider again the speed-up of a program with sequential portion S where the portion 1 − S enjoys 

perfect linear speed-up. This time, hold S constant and vary the number of processors P from 2 to 32. 

On the same graph, show four curves, one each for S = 0.01, S = 0.1, S = 0.3, and S = 0.4. 
 

Problem 2:  Filter (“Pack”) 
In this problem, the input is an array of strings and the output is an array of integers. The output has the 

length of each string in the input, but empty strings are filtered out.  

For example, this input:  [ "", "", "cse", "332", "", "hw", "", "7", "rox" ] 

Produces this output:  [ 3, 3, 2, 1, 3] 
 

A parallel algorithm can solve this problem in O(log n) span and O(n) work by: 

 1) doing a parallel map to produce a bit vector,  

 2) doing a parallel prefix over the bit vector, and  

 3) doing a parallel map to produce the output. 
 

Show a detailed walk through of the algorithm described above in the following way:  

1) For step 1, give Java fork join code that does the mapping to a bit vector (Use an int array for 

the bit vector, one int per bit - do not do bitwise ops.)  

2) For step 2, as done in lecture and section, in two phases, draw the actual prefix tree that would 

be created, including the fields in each node of the tree and their values for the specific example 

shown above.  This can be two separate trees or done with different colors of ink and a careful 

description in the two phases (“up” and “down”). Note: because the input length is not a power of 

two, the tree will not have all its leaves at exactly the same height. (You do not have to show the 

fork-join code for this step, only the tree created and its contents.) 

3) For step 3, give Java fork join code that does the mapping from the parallel prefix output to the 

final output as shown above. 
 

It is fine to use .length() to find the length of Strings.  Do not use a sequential cut-off for any of the three 

steps.  The code in step 1 and step 3 should be general and applicable to other sample inputs.  In step 1 

and 3, be sure to give a full class description for your thread class including constructor, fields, 

parameters passed to your thread objects, etc. 
 

Problem 3:  Parallel Quicksort 
Lecture presented a parallel version of quicksort with best-case O(log

2
n) span and O(n log n) work. This 

algorithm used parallelism for the two recursive sorting calls and for the partitioning. 
 

(a) For the algorithm from lecture, what is the asymptotic worst-case span and work.  For both, state a 

recurrence and solve it – show your work solving the recurrence. 

(b) Suppose we use the parallel partition part of the algorithm, but perform the two recursive calls in 

sequence rather than parallel.  What is the asymptotic worst-case span and work? For both, state a 

recurrence and solve it – show your work solving the recurrence.  


