Week 7 Solutions

CSE 332 Summer 2015

Quickcheck and Group Problems

Quickcheck) Parallel Prefix Sum

Goal: Output array needs to store sums of everything up to a certain

index. Meaning:

Output[i] = input[i]+input[i-1]+input[i-2]+...+input[0]

input	8	9	6	3	2	5	7	2
output								

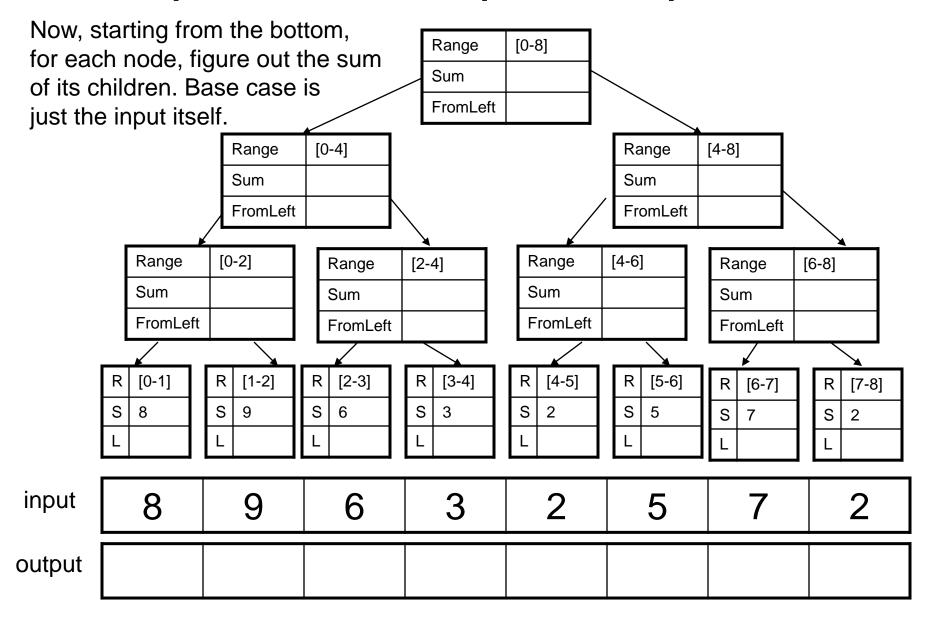
Figure out what information you need

Range [0-8]
Sum
FromLeft

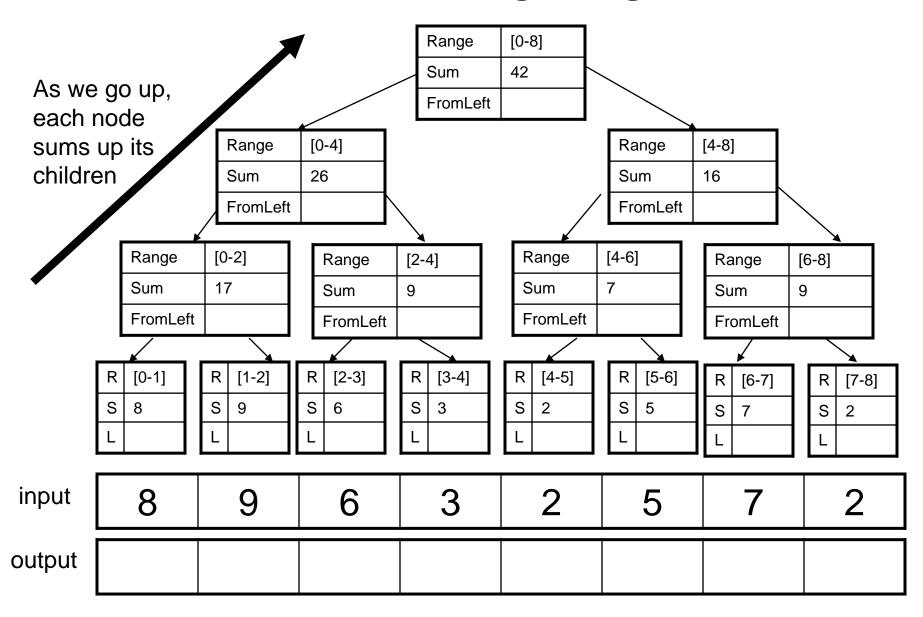
Start off at root with the entire range of the problem (low=0, high=8). We need to find the Sum and the FromLeft value of the root, but we will do this in two passes. First pass, go down and split up the problem until we get to the cutoff of one item (high-low=1)

input	8	9	6	3	2	5	7	2
output								

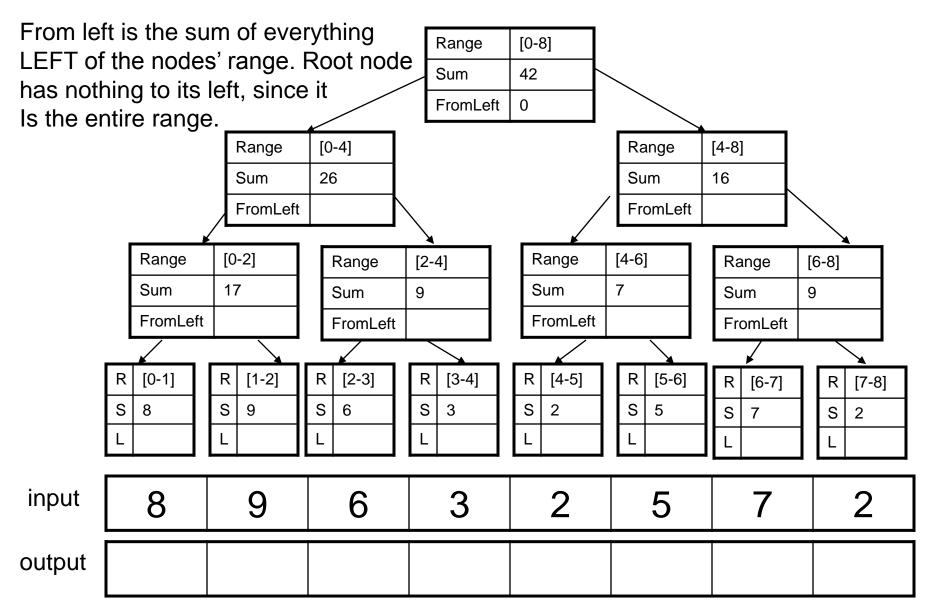
Divide problem into parallel pieces



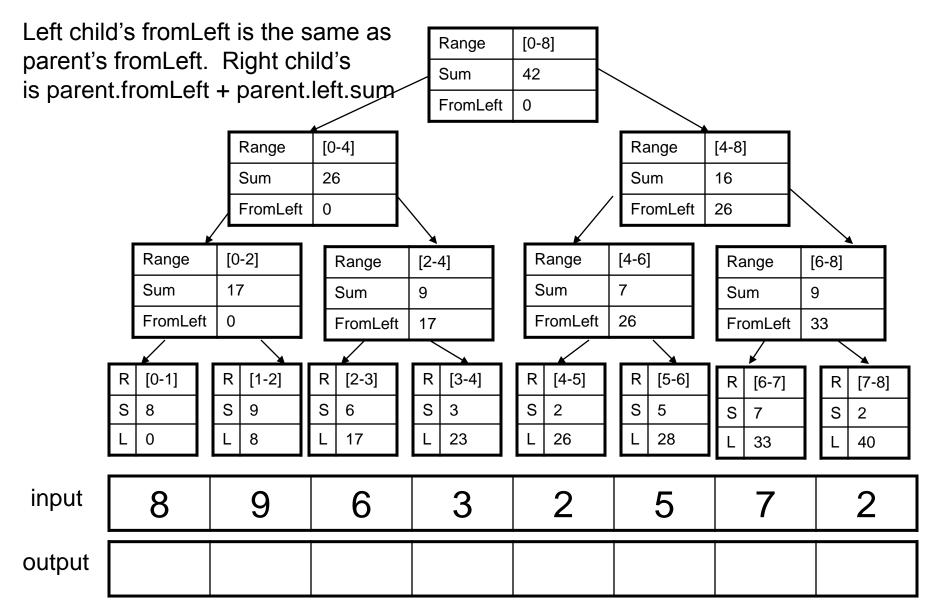
1st pass, find sums going up.



2nd pass, fill out FromLeft going down



2nd pass, fill out FromLeft going down

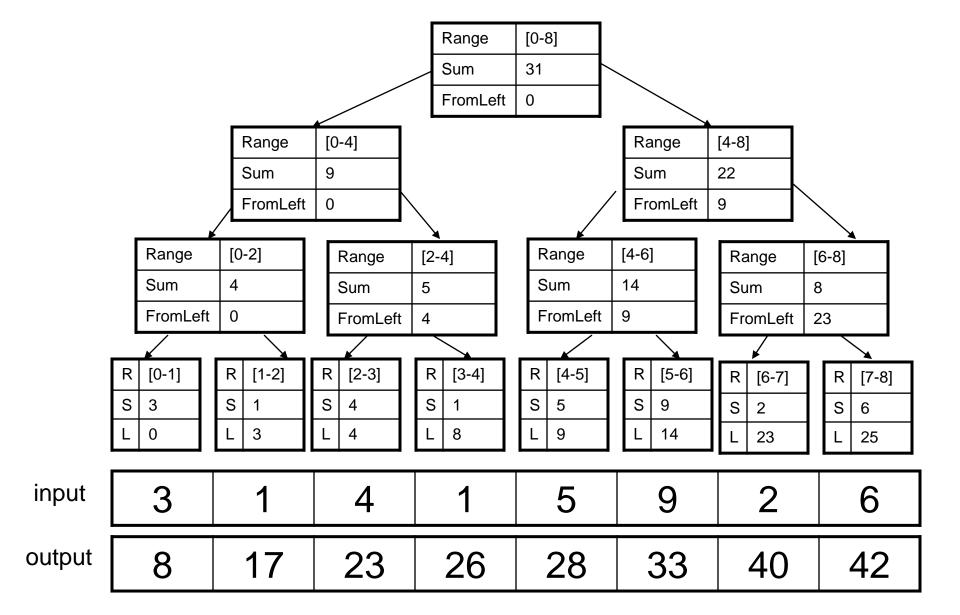


Finally, fill out output array

output[this.low] = this.sum + this.fromLeft Basically, each node at the bottom [8-0] Range has all the info it needs to fill out Sum 42 its output array cell without relying FromLeft 0 on data from other nodes now! Range [0-4] [4-8] Range Sum 26 Sum 16 FromLeft FromLeft 26 Range [4-6] [0-2]Range Range [2-4] Range [6-8] Sum 17 Sum 7 Sum 9 9 Sum FromLeft 0 FromLeft 26 FromLeft 17 FromLeft 33 [1-2] [2-3] [4-5] R R R [0-1] [3-4] R [5-6] R [6-7] R [7-8] S 17 23 26 28 33 40 input 8 6 3 2 5 2 9 output 28 42 23 26 33 40

Now for the group problems:

1: Prefix Sum of pi

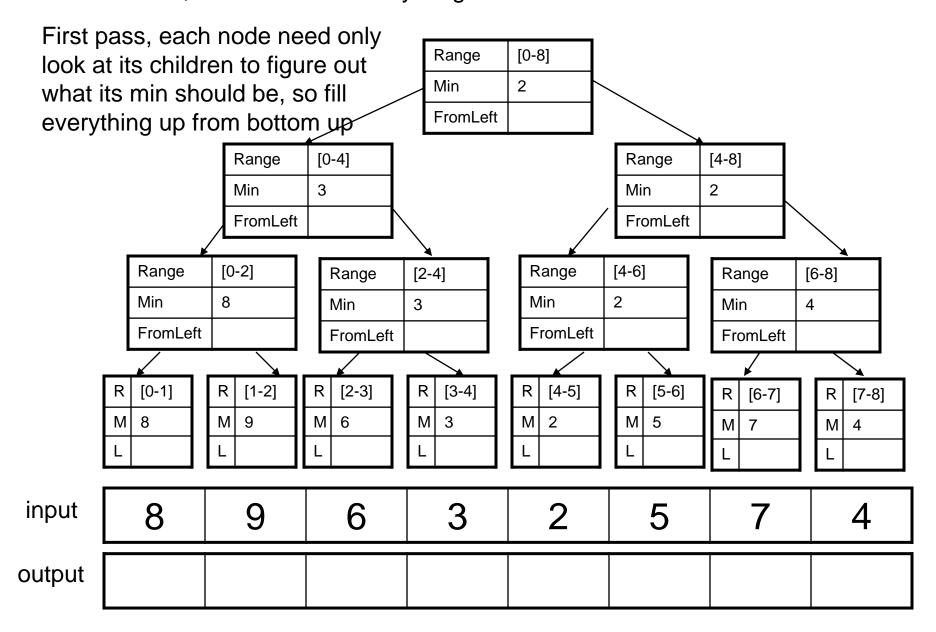


2) Parallel Prefix FindMin

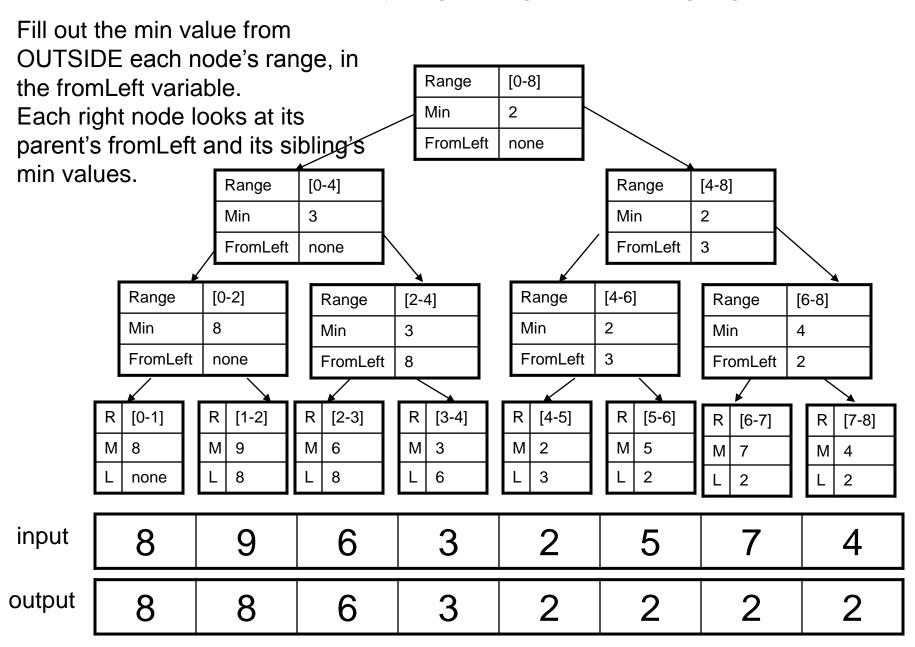
Output an array with the minimum value of all cells to its left. So, output[i] = min(input[0],input[1],input[2],....input[i-1],input[i])

input	8	9	6	3	2	5	7	4
output								

Same as before, except this time, we want to store the node's range, the min of its children, and the min of everything to its left.



Second pass, we need to fill everything starting from the root going down.



3) Quicksort Recurrence Relations

- Recall that sequential Quicksort consists of
 - O(1) Picking a pivot
 - O(n) Partition data into
 - A: Less than pivot
 - B: Pivot
 - C: Greater than pivot
 - 2 T(n/2) Recursively, sort each of the two halves, A and C.
- T(n)=1+n+2T(n/2) = O(n log n)

To parallelize step 3 (recursion)

- Each partition can be done at the same, so 2T(n/2) becomes time 1 T(n/2)
- Whole relation becomes: T(n)=1+n+T(n/2)
- Ignoring the constant time pivot-picking:
- T(n) = n + T(n/2)

Solve recurrence relation

```
Assume T(1)=C, that is,
• T(n) = n + T(n/2)
                                  that to sort 1 element
                                  takes a constant C
• T(n) = n + (n/2 + T(n/4)) units of time.
• T(n) = n + (n/2 + (n/4 + T(n/8)))
• T(n) = n^*(1+1/2+1/4+...+1/2^{k-1})+T(n/2^k)
             Substitute in base case T(1)=1 and solve for k:
             n/2^{k}=1
• T(n) = n*(1+1/2+1/4+...+1/2^{logn-1})+C
• Sum of geometric series (1+1/2+1/4+...)
  converges to 2
```

T(n) = 2n+C which is O(n), linear

4) Parallelizing step 2, partition

- Do 2 filters, one to filter less-than-pivot partition, one to filter greater-than-pivot partition.
- Filter is work O(n), span O(log n)
- So total quicksort is now (partition+recursion):
- $T(n) = O(\log n) + T(n/2)$

Solve recurrence relation

- T(n) = log n + T(n/2) expand out recurrence
- T(n) = log n + (log(n/2) + T(n/4))
- T(n) = log n + log(n/2) + log(n/4) + T(n/8)
- T(n) = log n + log(n/2) + log(n/4) + log(n/8) + T(n/16)
- $T(n) = \log n + (\log n \log 2) + (\log n \log 4) + (\log n \log 8) + T(n/16)$
- T(n) = 4*log n log 2 log 4 log 8 + T(n/16)
- $T(n) = 4*log n 1 2 3 + T(n/2^4)$ because we're doing log base 2
- $T(n) = k*log n (1+2+3+...+(k-1))+T(n/2^k)$
- $T(n) = k*log n (k(k-1))/2 + T(n/2^k)$
- As usual, assuming T(1)=C, set n/2^k=1, gives k=log n
- $T(n) = (\log n)^*(\log n) ((\log n-1)(\log n))/2 + C$
- $T(n) = (\log n)^*(\log n) ((\log n * \log n) \log n)/2 + C$
- Which is O(log n * log n)

5) Concurrency: Data Races

Question from CSE332 10su final

```
Consider the code below:
public class StringArray {
      int len=0;
      String[] arr=new String[4];
      synchronized void checkAndResize() {
            //checks to see if array is full; if so, doubles size and copies over
            //if not, returns (nothing changes)
      synchronized int getLen() {return len;}
      synchronized void incLen() {len++;}
      synchronized void set(int index, String s) {arr[index]=s;}
      void add(String s) {
            checkAndResize();
            int myLength=getLen();
            set (myLength, s);
            incLen();
       } }
```

- Does it have a data race? Explain
 - Yes it has a data race, although methods are individually locked, they share resources.

5b) Interleaving that loses a String

Process 1: add(...)

- checkAndResize();
- int myLength=getLen();
- set(myLength,s);
- incLen();

Process 2: add(...)

- checkAndResize();
- int myLength=getLen();
- set(myLength,s);
- incLen();

5c) Interleaving that throws OOB

Process 1: add(...)

- checkAndResize();
- int myLength=getLen();
- set(myLength,s);
- incLen();

Process 2: add(...)

checkAndResize();

- int myLength=getLen();
- set(myLength,s);
- incLen();