CS	F339	15su	201	I 5_0	7_23
$\mathbf{c}_{\mathbf{o}}$	⊏JJZ	1550	Z U I	เจ-น	I =Z3

Name	
------	--

Section 5 Quick Check

Twitter wants a data structure to optimally store all of the tweets of the world based on how popular they are. An intrepid intern (you) suggest that since tweets are not comparable* that you use a Move to Front List to store all of the tweets. When someone writes a tweet it will be inserted, when someone retweets a tweet it is moved to the front.

What's the worst case running time of find(tweet)?
Let's so amortized analysis. What's the amortized running time if all tweets are, and will be equally popular?
What's the amortized runtime if all of the tweets are rubbish save one magical tweet from Ellen DeGeneres which everyone in the world retweeted?

What if the tweets follow a power law distribution?

^{*} Are tweets not comparable? Is MTF the best we can do?